Wire up GPT understand method to /chat API. Log conversation metadata too

This commit is contained in:
Debanjum Singh Solanky 2021-11-28 00:04:39 +05:30
parent 882e0f81b4
commit 67c3cd7372
3 changed files with 59 additions and 26 deletions

View file

@ -12,7 +12,7 @@ from src.search_type import asymmetric, symmetric_ledger, image_search
from src.utils.helpers import get_absolute_path
from src.utils.cli import cli
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
from src.processor.conversation.gpt import converse, message_to_prompt
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand
# Application Global State
@ -91,13 +91,16 @@ def regenerate(t: Optional[SearchType] = None):
@app.get('/chat')
def chat(q: str):
# Load Conversation History
conversation_history = processor_config.conversation.conversation_history
chat_log = processor_config.conversation.chat_log
meta_log = processor_config.conversation.meta_log
# Converse with OpenAI GPT
gpt_response = converse(q, conversation_history, api_key=processor_config.conversation.openai_api_key)
user_message_metadata = understand(q, api_key=processor_config.conversation.openai_api_key)
gpt_response = converse(q, chat_log, api_key=processor_config.conversation.openai_api_key)
# Update Conversation History
processor_config.conversation.conversation_history = message_to_prompt(q, conversation_history, gpt_response)
processor_config.conversation.chat_log = message_to_prompt(q, chat_log, gpt_message=gpt_response)
processor_config.conversation.meta_log= message_to_log(q, user_message_metadata, gpt_response, meta_log)
return {'status': 'ok', 'response': gpt_response}
@ -130,36 +133,48 @@ def initialize_search(config, regenerate, verbose):
def initialize_processor(config, verbose):
processor_config = ProcessorConfig()
# Initialize Conversation Processor
processor_config = ProcessorConfig()
processor_config.conversation = ConversationProcessorConfig.create_from_dictionary(config, ('processor', 'conversation'), verbose)
# Load or Initialize Conversation History from Disk
conversation_logfile = processor_config.conversation.conversation_logfile
if processor_config.conversation.verbose:
print('Saving conversation logs to disk...')
print('INFO:\tLoading conversation logs from disk...')
if conversation_logfile.expanduser().absolute().is_file():
# Load Metadata Logs from Conversation Logfile
with open(get_absolute_path(conversation_logfile), 'r') as f:
processor_config.conversation.conversation_history = json.load(f).get('chat', '')
processor_config.conversation.meta_log = json.load(f)
# Extract Chat Logs from Metadata
processor_config.conversation.chat_log = ''.join(
[f'\n{item["by"]}: {item["message"]}'
for item
in processor_config.conversation.meta_log])
print('INFO:\tConversation logs loaded from disk.')
else:
processor_config.conversation.conversation_history = ''
# Initialize Conversation Logs
processor_config.conversation.meta_log = []
processor_config.conversation.chat_log = ""
return processor_config
@app.on_event('shutdown')
def shutdown_event():
if processor_config.conversation.verbose:
print('Saving conversation logs to disk...')
# No need to create empty log file
if not processor_config.conversation.meta_log:
return
elif processor_config.conversation.verbose:
print('INFO:\tSaving conversation logs to disk...')
# Save Conversation History to Disk
# Save Conversation Metadata Logs to Disk
conversation_logfile = get_absolute_path(processor_config.conversation.conversation_logfile)
with open(conversation_logfile, "w+", encoding='utf-8') as logfile:
json.dump({"chat": processor_config.conversation.conversation_history}, logfile)
json.dump(processor_config.conversation.meta_log, logfile)
print('Conversation logs saved to disk.')
print('INFO:\tConversation logs saved to disk.')
if __name__ == '__main__':

View file

@ -1,5 +1,7 @@
# Standard Packages
import os
import json
from datetime import datetime
# External Packages
import openai
@ -11,12 +13,12 @@ def understand(text, api_key=None, temperature=0.5, max_tokens=100):
"""
# Initialize Variables
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
understand_primer="Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")"
understand_primer = "Extract intent, trigger emotion information as JSON from each chat message\n\n- intent\n - remember(memory-type, data);\n - memory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\n - search(search-type, data);\n - search-type=[\"google\"]\n - generate(activity);\n - activity=[\"paint\",\"write\", \"chat\"]\n- trigger-emotion(emotion)\n - emotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: { \"intent\": [\"activity\", \"chat\"], \"trigger-emotion\": \"surprise\" }\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: { \"intent\": [\"remember\", \"notes\", \"Brother Antoine when we were at the beach\"], \"trigger-emotion\": \"curiosity\" }\nQ: what did we talk about last time?\nA: { \"intent\": [\"remember\", \"notes\", \"talk last time\"], \"trigger-emotion\": \"curiosity\" }\nQ: Let's make some drawings!\nA: { \"intent\": [\"generate\", \"paint\"], \"trigger-emotion: \"happy\" }\nQ: Do you know anything about Lebanon cuisine in the 18th century?\nA: { \"intent\": [\"search\", \"google\", \"lebanon cusine in the 18th century\"], \"trigger-emotion; \"confidence\" }\nQ: Tell me a scary story\nA: { \"intent\": [\"generate\", \"write\", \"A story about some adventure\"], \"trigger-emotion\": \"fear\" }\nQ: What fiction book was I reading last week about AI starship?\nA: { \"intent\": [\"remember\", \"notes\", \"fiction book about AI starship last week\"], \"trigger-emotion\": \"curiosity\" }\nQ: How much did I spend at Subway for dinner last time?\nA: { \"intent\": [\"remember\", \"ledger\", \"last Subway dinner\"], \"trigger-emotion\": \"curiosity\" }\nQ: I'm feeling sleepy\nA: { \"intent\": [\"activity\", \"chat\"], \"trigger-emotion\": \"calm\" }\nQ: What was that popular Sri lankan song that Alex had mentioned?\nA: { \"intent\": [\"remember\", \"music\", \"popular Sri lankan song mentioned by Alex\"], \"trigger-emotion\": \"curiosity\" } \nQ: You're pretty funny!\nA: { \"intent\": [\"activity\", \"chat\"], \"trigger-emotion\": \"pride\" }\nQ: Can you recommend a movie to watch from my notes?\nA: { \"intent\": [\"remember\", \"notes\", \"movie to watch\"], \"trigger-emotion\": \"curiosity\" }",
# Setup Prompt with Understand Primer
prompt = message_to_prompt(text, understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
# Get Reponse from GPT
# Get Response from GPT
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
@ -63,8 +65,22 @@ def converse(text, conversation_history=None, api_key=None, temperature=0.9, max
def message_to_prompt(user_message, conversation_history="", gpt_message=None, start_sequence="\nAI:", restart_sequence="\nHuman:"):
"""Create prompt for GPT from message"""
if gpt_message:
"""Create prompt for GPT from messages and conversation history"""
gpt_message = f" {gpt_message}" if gpt_message else ""
return f"{conversation_history}{restart_sequence} {user_message}{start_sequence}{gpt_message}"
else:
return f"{conversation_history}{restart_sequence} {user_message}{start_sequence}"
def message_to_log(user_message, user_message_metadata, gpt_message, conversation_log=[]):
"""Create json logs from messages, metadata for conversation log"""
# Create json log from Human's message
human_log = json.loads(user_message_metadata)
human_log["message"] = user_message
human_log["by"] = "Human"
human_log["created"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Create json log from GPT's response
ai_log = {"message": gpt_message, "by": "AI", "created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
conversation_log.extend([human_log, ai_log])
return conversation_log

View file

@ -96,10 +96,11 @@ class SearchConfig():
class ConversationProcessorConfig():
def __init__(self, conversation_logfile, conversation_history, openai_api_key, verbose):
def __init__(self, conversation_logfile, chat_log, meta_log, openai_api_key, verbose):
self.openai_api_key = openai_api_key
self.conversation_logfile = conversation_logfile
self.conversation_history = conversation_history
self.chat_log = chat_log
self.meta_log = meta_log
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
@ -109,7 +110,8 @@ class ConversationProcessorConfig():
return ConversationProcessorConfig(
openai_api_key = conversation_config['openai-api-key'],
conversation_history = '',
chat_log = '',
meta_log = [],
conversation_logfile = Path(conversation_config['conversation-logfile']),
verbose = verbose)