mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Reorder embeddings search arguments based on argument importance
This commit is contained in:
parent
0eacc0b2b0
commit
6a8fd9bf33
4 changed files with 7 additions and 7 deletions
|
@ -1413,11 +1413,11 @@ class EntryAdapters:
|
|||
|
||||
@staticmethod
|
||||
def search_with_embeddings(
|
||||
user: KhojUser,
|
||||
raw_query: str,
|
||||
embeddings: Tensor,
|
||||
user: KhojUser,
|
||||
max_results: int = 10,
|
||||
file_type_filter: str = None,
|
||||
raw_query: str = None,
|
||||
max_distance: float = math.inf,
|
||||
agent: Agent = None,
|
||||
):
|
||||
|
|
|
@ -160,8 +160,8 @@ async def execute_search(
|
|||
search_futures += [
|
||||
executor.submit(
|
||||
text_search.query,
|
||||
user,
|
||||
user_query,
|
||||
user,
|
||||
t,
|
||||
question_embedding=encoded_asymmetric_query,
|
||||
max_distance=max_distance,
|
||||
|
|
|
@ -97,8 +97,8 @@ def load_embeddings(
|
|||
|
||||
|
||||
async def query(
|
||||
user: KhojUser,
|
||||
raw_query: str,
|
||||
user: KhojUser,
|
||||
type: SearchType = SearchType.All,
|
||||
question_embedding: Union[torch.Tensor, None] = None,
|
||||
max_distance: float = None,
|
||||
|
@ -125,12 +125,12 @@ async def query(
|
|||
top_k = 10
|
||||
with timer("Search Time", logger, state.device):
|
||||
hits = EntryAdapters.search_with_embeddings(
|
||||
user=user,
|
||||
raw_query=raw_query,
|
||||
embeddings=question_embedding,
|
||||
max_results=top_k,
|
||||
file_type_filter=file_type,
|
||||
raw_query=raw_query,
|
||||
max_distance=max_distance,
|
||||
user=user,
|
||||
agent=agent,
|
||||
).all()
|
||||
hits = await sync_to_async(list)(hits) # type: ignore[call-arg]
|
||||
|
|
|
@ -164,7 +164,7 @@ async def test_text_search(search_config: SearchConfig):
|
|||
query = "Load Khoj on Emacs?"
|
||||
|
||||
# Act
|
||||
hits = await text_search.query(default_user, query)
|
||||
hits = await text_search.query(query, default_user)
|
||||
results = text_search.collate_results(hits)
|
||||
results = sorted(results, key=lambda x: float(x.score))[:1]
|
||||
|
||||
|
|
Loading…
Reference in a new issue