mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-17 18:17:10 +00:00
Merge branch 'master' of github.com:debanjum/semantic-search into add-summarize-capability-to-chat-bot
- Fix openai_api_key being set in ConfigProcessorConfig - Merge addition of config UI and config instantiation updates
This commit is contained in:
commit
6dc2a99d35
19 changed files with 424 additions and 210 deletions
59
.github/workflows/build.yml
vendored
59
.github/workflows/build.yml
vendored
|
@ -10,35 +10,50 @@ on:
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
test:
|
test:
|
||||||
name: Run Tests
|
strategy:
|
||||||
runs-on: "macos-latest"
|
matrix:
|
||||||
defaults:
|
include:
|
||||||
run:
|
- os: ubuntu-latest
|
||||||
shell: bash -l {0}
|
label: linux-64
|
||||||
|
prefix: /usr/share/miniconda3/envs/test
|
||||||
|
|
||||||
|
name: ${{ matrix.label }}
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v2
|
||||||
- name: Cache conda
|
|
||||||
uses: actions/cache@v2
|
- name: Install Environment Dependencies
|
||||||
env:
|
shell: bash -l {0}
|
||||||
# Increase this value to reset cache if environment.yml has not changed
|
run: sudo apt-get -y install libimage-exiftool-perl
|
||||||
CACHE_NUMBER: 0
|
|
||||||
with:
|
- name: Setup Mambaforge
|
||||||
path: ~/conda_pkgs_dir
|
uses: conda-incubator/setup-miniconda@v2
|
||||||
key:
|
|
||||||
${{ runner.os }}-conda-${{ env.CACHE_NUMBER }}-${{
|
|
||||||
hashFiles('environment.yml') }}
|
|
||||||
- uses: conda-incubator/setup-miniconda@v2
|
|
||||||
with:
|
with:
|
||||||
|
miniforge-variant: Mambaforge
|
||||||
|
miniforge-version: latest
|
||||||
activate-environment: test
|
activate-environment: test
|
||||||
|
use-mamba: true
|
||||||
environment-file: environment.yml
|
environment-file: environment.yml
|
||||||
python-version: 3.8
|
python-version: 3.8
|
||||||
auto-activate-base: false
|
auto-activate-base: false
|
||||||
use-only-tar-bz2: true
|
use-only-tar-bz2: true
|
||||||
- name: Conda Info
|
|
||||||
run: |
|
- name: Set cache date
|
||||||
conda info
|
run: echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||||
conda list
|
|
||||||
|
- uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: ${{ matrix.prefix }}
|
||||||
|
key: ${{ matrix.label }}-conda-${{ hashFiles('environment.yml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }}
|
||||||
|
env:
|
||||||
|
# Increase this value to reset cache if environment.yml has not changed
|
||||||
|
CACHE_NUMBER: 0
|
||||||
|
id: cache
|
||||||
|
|
||||||
|
- name: Update environment
|
||||||
|
run: mamba env update -n test -f environment.yml
|
||||||
|
if: steps.cache.outputs.cache-hit != 'true'
|
||||||
|
|
||||||
- name: Run Pytest
|
- name: Run Pytest
|
||||||
run: |
|
shell: bash -l {0}
|
||||||
python -m pytest
|
run: python -m pytest
|
||||||
|
|
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -4,3 +4,5 @@ __pycache__
|
||||||
tests/data/.*
|
tests/data/.*
|
||||||
src/.data
|
src/.data
|
||||||
.vscode
|
.vscode
|
||||||
|
*.gz
|
||||||
|
*.pt
|
|
@ -16,6 +16,11 @@
|
||||||
conda activate semantic-search
|
conda activate semantic-search
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
*** Install Environmental Dependencies
|
||||||
|
#+begin_src shell
|
||||||
|
sudo apt-get -y install libimage-exiftool-perl
|
||||||
|
#+end_src
|
||||||
|
|
||||||
** Configure
|
** Configure
|
||||||
Configure application search types and their underlying data source/files in ~sample_config.yml~
|
Configure application search types and their underlying data source/files in ~sample_config.yml~
|
||||||
Use the ~sample_config.yml~ as reference
|
Use the ~sample_config.yml~ as reference
|
||||||
|
|
|
@ -6,7 +6,7 @@ dependencies:
|
||||||
- numpy=1.*
|
- numpy=1.*
|
||||||
- pytorch=1.*
|
- pytorch=1.*
|
||||||
- transformers=4.*
|
- transformers=4.*
|
||||||
- sentence-transformers=2.0.0
|
- sentence-transformers=2.1.0
|
||||||
- fastapi=0.*
|
- fastapi=0.*
|
||||||
- uvicorn=0.*
|
- uvicorn=0.*
|
||||||
- pyyaml=5.*
|
- pyyaml=5.*
|
||||||
|
@ -14,3 +14,7 @@ dependencies:
|
||||||
- pillow=8.*
|
- pillow=8.*
|
||||||
- torchvision=0.*
|
- torchvision=0.*
|
||||||
- openai=0.*
|
- openai=0.*
|
||||||
|
- pydantic=1.*
|
||||||
|
- jinja2=3.0.*
|
||||||
|
- aiofiles=0.*
|
||||||
|
- huggingface_hub=0.*
|
110
src/main.py
110
src/main.py
|
@ -1,26 +1,49 @@
|
||||||
# Standard Packages
|
# Standard Packages
|
||||||
import sys
|
import sys, json, yaml
|
||||||
import json
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
# External Packages
|
# External Packages
|
||||||
import uvicorn
|
import uvicorn
|
||||||
from fastapi import FastAPI
|
from fastapi import FastAPI, Request
|
||||||
|
from fastapi.responses import HTMLResponse
|
||||||
|
from fastapi.staticfiles import StaticFiles
|
||||||
|
from fastapi.templating import Jinja2Templates
|
||||||
|
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.search_type import asymmetric, symmetric_ledger, image_search
|
from src.search_type import asymmetric, symmetric_ledger, image_search
|
||||||
from src.utils.helpers import get_absolute_path, get_from_dict
|
from src.utils.helpers import get_absolute_path, get_from_dict
|
||||||
from src.utils.cli import cli
|
from src.utils.cli import cli
|
||||||
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
|
from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel
|
||||||
|
from src.utils.rawconfig import FullConfig
|
||||||
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand, summarize
|
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand, summarize
|
||||||
|
|
||||||
|
|
||||||
# Application Global State
|
# Application Global State
|
||||||
|
config = FullConfig()
|
||||||
model = SearchModels()
|
model = SearchModels()
|
||||||
search_config = SearchConfig()
|
processor_config = ProcessorConfigModel()
|
||||||
processor_config = ProcessorConfig()
|
config_file = ""
|
||||||
|
verbose = 0
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
app.mount("/views", StaticFiles(directory="views"), name="views")
|
||||||
|
templates = Jinja2Templates(directory="views/")
|
||||||
|
|
||||||
|
@app.get('/ui', response_class=HTMLResponse)
|
||||||
|
def ui(request: Request):
|
||||||
|
return templates.TemplateResponse("config.html", context={'request': request})
|
||||||
|
|
||||||
|
@app.get('/config', response_model=FullConfig)
|
||||||
|
def config_data():
|
||||||
|
return config
|
||||||
|
|
||||||
|
@app.post('/config')
|
||||||
|
async def config_data(updated_config: FullConfig):
|
||||||
|
global config
|
||||||
|
config = updated_config
|
||||||
|
with open(config_file, 'w') as outfile:
|
||||||
|
yaml.dump(yaml.safe_load(config.json(by_alias=True)), outfile)
|
||||||
|
outfile.close()
|
||||||
|
return config
|
||||||
|
|
||||||
@app.get('/search')
|
@app.get('/search')
|
||||||
def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
||||||
|
@ -60,7 +83,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
||||||
return image_search.collate_results(
|
return image_search.collate_results(
|
||||||
hits,
|
hits,
|
||||||
model.image_search.image_names,
|
model.image_search.image_names,
|
||||||
search_config.image.input_directory,
|
config.content_type.image.input_directory,
|
||||||
results_count)
|
results_count)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
@ -69,22 +92,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
||||||
|
|
||||||
@app.get('/regenerate')
|
@app.get('/regenerate')
|
||||||
def regenerate(t: Optional[SearchType] = None):
|
def regenerate(t: Optional[SearchType] = None):
|
||||||
if (t == SearchType.Notes or t == None) and search_config.notes:
|
initialize_search(config, regenerate=True, t=t)
|
||||||
# Extract Entries, Generate Embeddings
|
|
||||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=True)
|
|
||||||
|
|
||||||
if (t == SearchType.Music or t == None) and search_config.music:
|
|
||||||
# Extract Entries, Generate Song Embeddings
|
|
||||||
model.music_search = asymmetric.setup(search_config.music, regenerate=True)
|
|
||||||
|
|
||||||
if (t == SearchType.Ledger or t == None) and search_config.ledger:
|
|
||||||
# Extract Entries, Generate Embeddings
|
|
||||||
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=True)
|
|
||||||
|
|
||||||
if (t == SearchType.Image or t == None) and search_config.image:
|
|
||||||
# Extract Images, Generate Embeddings
|
|
||||||
model.image_search = image_search.setup(search_config.image, regenerate=True)
|
|
||||||
|
|
||||||
return {'status': 'ok', 'message': 'regeneration completed'}
|
return {'status': 'ok', 'message': 'regeneration completed'}
|
||||||
|
|
||||||
|
|
||||||
|
@ -111,37 +119,40 @@ def chat(q: str):
|
||||||
return {'status': 'ok', 'response': gpt_response}
|
return {'status': 'ok', 'response': gpt_response}
|
||||||
|
|
||||||
|
|
||||||
def initialize_search(config, regenerate, verbose):
|
def initialize_search(config: FullConfig, regenerate: bool, t: SearchType = None):
|
||||||
model = SearchModels()
|
model = SearchModels()
|
||||||
search_config = SearchConfig()
|
|
||||||
|
|
||||||
# Initialize Org Notes Search
|
# Initialize Org Notes Search
|
||||||
search_config.notes = TextSearchConfig.create_from_dictionary(config, ('content-type', 'org'), verbose)
|
if (t == SearchType.Notes or t == None) and config.content_type.org:
|
||||||
if search_config.notes:
|
# Extract Entries, Generate Notes Embeddings
|
||||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=regenerate)
|
model.notes_search = asymmetric.setup(config.content_type.org, regenerate=regenerate, verbose=verbose)
|
||||||
|
|
||||||
# Initialize Org Music Search
|
# Initialize Org Music Search
|
||||||
search_config.music = TextSearchConfig.create_from_dictionary(config, ('content-type', 'music'), verbose)
|
if (t == SearchType.Music or t == None) and config.content_type.music:
|
||||||
if search_config.music:
|
# Extract Entries, Generate Music Embeddings
|
||||||
model.music_search = asymmetric.setup(search_config.music, regenerate=regenerate)
|
model.music_search = asymmetric.setup(config.content_type.music, regenerate=regenerate, verbose=verbose)
|
||||||
|
|
||||||
# Initialize Ledger Search
|
# Initialize Ledger Search
|
||||||
search_config.ledger = TextSearchConfig.create_from_dictionary(config, ('content-type', 'ledger'), verbose)
|
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
|
||||||
if search_config.ledger:
|
# Extract Entries, Generate Ledger Embeddings
|
||||||
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=regenerate)
|
model.ledger_search = symmetric_ledger.setup(config.content_type.ledger, regenerate=regenerate, verbose=verbose)
|
||||||
|
|
||||||
# Initialize Image Search
|
# Initialize Image Search
|
||||||
search_config.image = ImageSearchConfig.create_from_dictionary(config, ('content-type', 'image'), verbose)
|
if (t == SearchType.Image or t == None) and config.content_type.image:
|
||||||
if search_config.image:
|
# Extract Entries, Generate Image Embeddings
|
||||||
model.image_search = image_search.setup(search_config.image, regenerate=regenerate)
|
model.image_search = image_search.setup(config.content_type.image, regenerate=regenerate, verbose=verbose)
|
||||||
|
|
||||||
return model, search_config
|
return model
|
||||||
|
|
||||||
|
|
||||||
def initialize_processor(config, verbose):
|
def initialize_processor(config: FullConfig):
|
||||||
|
if not config.processor:
|
||||||
|
return
|
||||||
|
|
||||||
|
processor_config = ProcessorConfigModel()
|
||||||
|
|
||||||
# Initialize Conversation Processor
|
# Initialize Conversation Processor
|
||||||
processor_config = ProcessorConfig()
|
processor_config.conversation = ConversationProcessorConfigModel(config.processor.conversation, verbose)
|
||||||
processor_config.conversation = ConversationProcessorConfig.create_from_dictionary(config, ('processor', 'conversation'), verbose)
|
|
||||||
|
|
||||||
conversation_logfile = processor_config.conversation.conversation_logfile
|
conversation_logfile = processor_config.conversation.conversation_logfile
|
||||||
if processor_config.conversation.verbose:
|
if processor_config.conversation.verbose:
|
||||||
|
@ -195,11 +206,20 @@ if __name__ == '__main__':
|
||||||
# Load config from CLI
|
# Load config from CLI
|
||||||
args = cli(sys.argv[1:])
|
args = cli(sys.argv[1:])
|
||||||
|
|
||||||
# Initialize Search from Config
|
# Stores the file path to the config file.
|
||||||
model, search_config = initialize_search(args.config, args.regenerate, args.verbose)
|
config_file = args.config_file
|
||||||
|
|
||||||
|
# Store the verbose flag
|
||||||
|
verbose = args.verbose
|
||||||
|
|
||||||
|
# Store the raw config data.
|
||||||
|
config = args.config
|
||||||
|
|
||||||
|
# Initialize the search model from Config
|
||||||
|
model = initialize_search(args.config, args.regenerate)
|
||||||
|
|
||||||
# Initialize Processor from Config
|
# Initialize Processor from Config
|
||||||
processor_config = initialize_processor(args.config, args.verbose)
|
processor_config = initialize_processor(args.config)
|
||||||
|
|
||||||
# Start Application Server
|
# Start Application Server
|
||||||
if args.socket:
|
if args.socket:
|
||||||
|
|
|
@ -14,7 +14,8 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||||
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
|
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
|
||||||
from src.utils.config import TextSearchModel, TextSearchConfig
|
from src.utils.config import TextSearchModel
|
||||||
|
from src.utils.rawconfig import TextSearchConfig
|
||||||
|
|
||||||
|
|
||||||
def initialize_model():
|
def initialize_model():
|
||||||
|
@ -58,7 +59,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
|
||||||
corpus_embeddings = bi_encoder.encode([entry[0] for entry in entries], convert_to_tensor=True, show_progress_bar=True)
|
corpus_embeddings = bi_encoder.encode([entry[0] for entry in entries], convert_to_tensor=True, show_progress_bar=True)
|
||||||
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
|
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
|
||||||
if verbose > 0:
|
if verbose > 0:
|
||||||
print(f"Computed embeddings and save them to {embeddings_file}")
|
print(f"Computed embeddings and saved them to {embeddings_file}")
|
||||||
|
|
||||||
return corpus_embeddings
|
return corpus_embeddings
|
||||||
|
|
||||||
|
@ -148,22 +149,22 @@ def collate_results(hits, entries, count=5):
|
||||||
in hits[0:count]]
|
in hits[0:count]]
|
||||||
|
|
||||||
|
|
||||||
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool=False) -> TextSearchModel:
|
||||||
# Initialize Model
|
# Initialize Model
|
||||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||||
|
|
||||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||||
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, config.verbose)
|
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, verbose)
|
||||||
|
|
||||||
# Extract Entries
|
# Extract Entries
|
||||||
entries = extract_entries(config.compressed_jsonl, config.verbose)
|
entries = extract_entries(config.compressed_jsonl, verbose)
|
||||||
top_k = min(len(entries), top_k) # top_k hits can't be more than the total entries in corpus
|
top_k = min(len(entries), top_k) # top_k hits can't be more than the total entries in corpus
|
||||||
|
|
||||||
# Compute or Load Embeddings
|
# Compute or Load Embeddings
|
||||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
|
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||||
|
|
||||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
|
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=verbose)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -10,9 +10,10 @@ from tqdm import trange
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
from src.utils.helpers import resolve_absolute_path
|
||||||
import src.utils.exiftool as exiftool
|
import src.utils.exiftool as exiftool
|
||||||
from src.utils.config import ImageSearchModel, ImageSearchConfig
|
from src.utils.config import ImageSearchModel
|
||||||
|
from src.utils.rawconfig import ImageSearchConfig
|
||||||
|
|
||||||
|
|
||||||
def initialize_model():
|
def initialize_model():
|
||||||
|
@ -153,13 +154,13 @@ def collate_results(hits, image_names, image_directory, count=5):
|
||||||
in hits[0:count]]
|
in hits[0:count]]
|
||||||
|
|
||||||
|
|
||||||
def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
def setup(config: ImageSearchConfig, regenerate: bool, verbose: bool=False) -> ImageSearchModel:
|
||||||
# Initialize Model
|
# Initialize Model
|
||||||
encoder = initialize_model()
|
encoder = initialize_model()
|
||||||
|
|
||||||
# Extract Entries
|
# Extract Entries
|
||||||
image_directory = resolve_absolute_path(config.input_directory, strict=True)
|
image_directory = resolve_absolute_path(config.input_directory, strict=True)
|
||||||
image_names = extract_entries(image_directory, config.verbose)
|
image_names = extract_entries(image_directory, verbose)
|
||||||
|
|
||||||
# Compute or Load Embeddings
|
# Compute or Load Embeddings
|
||||||
embeddings_file = resolve_absolute_path(config.embeddings_file)
|
embeddings_file = resolve_absolute_path(config.embeddings_file)
|
||||||
|
@ -170,13 +171,13 @@ def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
||||||
batch_size=config.batch_size,
|
batch_size=config.batch_size,
|
||||||
regenerate=regenerate,
|
regenerate=regenerate,
|
||||||
use_xmp_metadata=config.use_xmp_metadata,
|
use_xmp_metadata=config.use_xmp_metadata,
|
||||||
verbose=config.verbose)
|
verbose=verbose)
|
||||||
|
|
||||||
return ImageSearchModel(image_names,
|
return ImageSearchModel(image_names,
|
||||||
image_embeddings,
|
image_embeddings,
|
||||||
image_metadata_embeddings,
|
image_metadata_embeddings,
|
||||||
encoder,
|
encoder,
|
||||||
config.verbose)
|
verbose)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -1,9 +1,6 @@
|
||||||
# Standard Packages
|
# Standard Packages
|
||||||
import json
|
import json
|
||||||
import time
|
|
||||||
import gzip
|
import gzip
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import re
|
import re
|
||||||
import argparse
|
import argparse
|
||||||
import pathlib
|
import pathlib
|
||||||
|
@ -15,11 +12,12 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||||
from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl
|
from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl
|
||||||
from src.utils.config import TextSearchModel, TextSearchConfig
|
from src.utils.config import TextSearchModel
|
||||||
|
from src.utils.rawconfig import TextSearchConfig
|
||||||
|
|
||||||
|
|
||||||
def initialize_model():
|
def initialize_model():
|
||||||
"Initialize model for symetric semantic search. That is, where query of similar size to results"
|
"Initialize model for symmetric semantic search. That is, where query of similar size to results"
|
||||||
torch.set_num_threads(4)
|
torch.set_num_threads(4)
|
||||||
bi_encoder = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') # The encoder encodes all entries to use for semantic search
|
bi_encoder = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') # The encoder encodes all entries to use for semantic search
|
||||||
top_k = 30 # Number of entries we want to retrieve with the bi-encoder
|
top_k = 30 # Number of entries we want to retrieve with the bi-encoder
|
||||||
|
@ -55,7 +53,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
|
||||||
corpus_embeddings = bi_encoder.encode(entries, convert_to_tensor=True, show_progress_bar=True)
|
corpus_embeddings = bi_encoder.encode(entries, convert_to_tensor=True, show_progress_bar=True)
|
||||||
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
|
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
|
||||||
if verbose > 0:
|
if verbose > 0:
|
||||||
print(f"Computed embeddings and save them to {embeddings_file}")
|
print(f"Computed embeddings and saved them to {embeddings_file}")
|
||||||
|
|
||||||
return corpus_embeddings
|
return corpus_embeddings
|
||||||
|
|
||||||
|
@ -143,22 +141,22 @@ def collate_results(hits, entries, count=5):
|
||||||
in hits[0:count]]
|
in hits[0:count]]
|
||||||
|
|
||||||
|
|
||||||
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||||
# Initialize Model
|
# Initialize Model
|
||||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||||
|
|
||||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||||
beancount_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, config.verbose)
|
beancount_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, verbose)
|
||||||
|
|
||||||
# Extract Entries
|
# Extract Entries
|
||||||
entries = extract_entries(config.compressed_jsonl, config.verbose)
|
entries = extract_entries(config.compressed_jsonl, verbose)
|
||||||
top_k = min(len(entries), top_k)
|
top_k = min(len(entries), top_k)
|
||||||
|
|
||||||
# Compute or Load Embeddings
|
# Compute or Load Embeddings
|
||||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
|
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||||
|
|
||||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
|
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=verbose)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -1,12 +1,14 @@
|
||||||
# Standard Packages
|
# Standard Packages
|
||||||
import argparse
|
import argparse
|
||||||
import pathlib
|
import pathlib
|
||||||
|
import json
|
||||||
|
|
||||||
# External Packages
|
# External Packages
|
||||||
import yaml
|
import yaml
|
||||||
|
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.utils.helpers import is_none_or_empty, get_absolute_path, resolve_absolute_path, get_from_dict, merge_dicts
|
from src.utils.helpers import is_none_or_empty, get_absolute_path, resolve_absolute_path, merge_dicts
|
||||||
|
from src.utils.rawconfig import FullConfig
|
||||||
|
|
||||||
def cli(args=None):
|
def cli(args=None):
|
||||||
if is_none_or_empty(args):
|
if is_none_or_empty(args):
|
||||||
|
@ -35,12 +37,15 @@ def cli(args=None):
|
||||||
with open(get_absolute_path(args.config_file), 'r', encoding='utf-8') as config_file:
|
with open(get_absolute_path(args.config_file), 'r', encoding='utf-8') as config_file:
|
||||||
config_from_file = yaml.safe_load(config_file)
|
config_from_file = yaml.safe_load(config_file)
|
||||||
args.config = merge_dicts(priority_dict=config_from_file, default_dict=args.config)
|
args.config = merge_dicts(priority_dict=config_from_file, default_dict=args.config)
|
||||||
|
args.config = FullConfig.parse_obj(args.config)
|
||||||
|
else:
|
||||||
|
args.config = FullConfig.parse_obj(args.config)
|
||||||
|
|
||||||
if args.org_files:
|
if args.org_files:
|
||||||
args.config['content-type']['org']['input-files'] = args.org_files
|
args.config.content_type.org.input_files = args.org_files
|
||||||
|
|
||||||
if args.org_filter:
|
if args.org_filter:
|
||||||
args.config['content-type']['org']['input-filter'] = args.org_filter
|
args.config.content_type.org.input_filter = args.org_filter
|
||||||
|
|
||||||
return args
|
return args
|
||||||
|
|
||||||
|
|
|
@ -4,7 +4,7 @@ from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.utils.helpers import get_from_dict
|
from src.utils.rawconfig import ConversationProcessorConfig
|
||||||
|
|
||||||
|
|
||||||
class SearchType(str, Enum):
|
class SearchType(str, Enum):
|
||||||
|
@ -42,80 +42,15 @@ class SearchModels():
|
||||||
image_search: ImageSearchModel = None
|
image_search: ImageSearchModel = None
|
||||||
|
|
||||||
|
|
||||||
class TextSearchConfig():
|
class ConversationProcessorConfigModel():
|
||||||
def __init__(self, input_files, input_filter, compressed_jsonl, embeddings_file, verbose):
|
def __init__(self, processor_config: ConversationProcessorConfig, verbose: bool):
|
||||||
self.input_files = input_files
|
self.openai_api_key = processor_config.openai_api_key
|
||||||
self.input_filter = input_filter
|
self.conversation_logfile = Path(processor_config.conversation_logfile)
|
||||||
self.compressed_jsonl = Path(compressed_jsonl)
|
self.chat_session = ''
|
||||||
self.embeddings_file = Path(embeddings_file)
|
self.meta_log = []
|
||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
|
|
||||||
|
|
||||||
def create_from_dictionary(config, key_tree, verbose):
|
|
||||||
text_config = get_from_dict(config, *key_tree)
|
|
||||||
search_enabled = text_config and ('input-files' in text_config or 'input-filter' in text_config)
|
|
||||||
if not search_enabled:
|
|
||||||
return None
|
|
||||||
|
|
||||||
return TextSearchConfig(
|
|
||||||
input_files = text_config['input-files'],
|
|
||||||
input_filter = text_config['input-filter'],
|
|
||||||
compressed_jsonl = Path(text_config['compressed-jsonl']),
|
|
||||||
embeddings_file = Path(text_config['embeddings-file']),
|
|
||||||
verbose = verbose)
|
|
||||||
|
|
||||||
|
|
||||||
class ImageSearchConfig():
|
|
||||||
def __init__(self, input_directory, embeddings_file, batch_size, use_xmp_metadata, verbose):
|
|
||||||
self.input_directory = input_directory
|
|
||||||
self.embeddings_file = Path(embeddings_file)
|
|
||||||
self.batch_size = batch_size
|
|
||||||
self.use_xmp_metadata = use_xmp_metadata
|
|
||||||
self.verbose = verbose
|
|
||||||
|
|
||||||
def create_from_dictionary(config, key_tree, verbose):
|
|
||||||
image_config = get_from_dict(config, *key_tree)
|
|
||||||
search_enabled = image_config and 'input-directory' in image_config
|
|
||||||
if not search_enabled:
|
|
||||||
return None
|
|
||||||
|
|
||||||
return ImageSearchConfig(
|
|
||||||
input_directory = Path(image_config['input-directory']),
|
|
||||||
embeddings_file = Path(image_config['embeddings-file']),
|
|
||||||
batch_size = image_config['batch-size'],
|
|
||||||
use_xmp_metadata = {'yes': True, 'no': False}[image_config['use-xmp-metadata']],
|
|
||||||
verbose = verbose)
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class SearchConfig():
|
class ProcessorConfigModel():
|
||||||
notes: TextSearchConfig = None
|
conversation: ConversationProcessorConfigModel = None
|
||||||
ledger: TextSearchConfig = None
|
|
||||||
music: TextSearchConfig = None
|
|
||||||
image: ImageSearchConfig = None
|
|
||||||
|
|
||||||
|
|
||||||
class ConversationProcessorConfig():
|
|
||||||
def __init__(self, conversation_logfile, chat_session, meta_log, openai_api_key, verbose):
|
|
||||||
self.openai_api_key = openai_api_key
|
|
||||||
self.conversation_logfile = conversation_logfile
|
|
||||||
self.chat_session = chat_session
|
|
||||||
self.meta_log = meta_log
|
|
||||||
self.verbose = verbose
|
|
||||||
|
|
||||||
def create_from_dictionary(config, key_tree, verbose):
|
|
||||||
conversation_config = get_from_dict(config, *key_tree)
|
|
||||||
if not conversation_config:
|
|
||||||
return None
|
|
||||||
|
|
||||||
return ConversationProcessorConfig(
|
|
||||||
openai_api_key = conversation_config['openai-api-key'],
|
|
||||||
chat_session = '',
|
|
||||||
meta_log = [],
|
|
||||||
conversation_logfile = Path(conversation_config['conversation-logfile']),
|
|
||||||
verbose = verbose)
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ProcessorConfig():
|
|
||||||
conversation: ConversationProcessorConfig = None
|
|
||||||
|
|
|
@ -4,6 +4,8 @@ import pathlib
|
||||||
def is_none_or_empty(item):
|
def is_none_or_empty(item):
|
||||||
return item == None or (hasattr(item, '__iter__') and len(item) == 0)
|
return item == None or (hasattr(item, '__iter__') and len(item) == 0)
|
||||||
|
|
||||||
|
def to_snake_case_from_dash(item: str):
|
||||||
|
return item.replace('_', '-')
|
||||||
|
|
||||||
def get_absolute_path(filepath):
|
def get_absolute_path(filepath):
|
||||||
return str(pathlib.Path(filepath).expanduser().absolute())
|
return str(pathlib.Path(filepath).expanduser().absolute())
|
||||||
|
|
62
src/utils/rawconfig.py
Normal file
62
src/utils/rawconfig.py
Normal file
|
@ -0,0 +1,62 @@
|
||||||
|
# System Packages
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
# External Packages
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
# Internal Packages
|
||||||
|
from src.utils.helpers import to_snake_case_from_dash
|
||||||
|
|
||||||
|
class ConfigBase(BaseModel):
|
||||||
|
class Config:
|
||||||
|
alias_generator = to_snake_case_from_dash
|
||||||
|
allow_population_by_field_name = True
|
||||||
|
|
||||||
|
class SearchConfig(ConfigBase):
|
||||||
|
input_files: Optional[List[str]]
|
||||||
|
input_filter: Optional[str]
|
||||||
|
embeddings_file: Optional[Path]
|
||||||
|
|
||||||
|
class TextSearchConfig(ConfigBase):
|
||||||
|
compressed_jsonl: Optional[Path]
|
||||||
|
input_files: Optional[List[str]]
|
||||||
|
input_filter: Optional[str]
|
||||||
|
embeddings_file: Optional[Path]
|
||||||
|
|
||||||
|
class ImageSearchConfig(ConfigBase):
|
||||||
|
use_xmp_metadata: Optional[str]
|
||||||
|
batch_size: Optional[int]
|
||||||
|
input_directory: Optional[Path]
|
||||||
|
input_filter: Optional[str]
|
||||||
|
embeddings_file: Optional[Path]
|
||||||
|
|
||||||
|
class ContentTypeConfig(ConfigBase):
|
||||||
|
org: Optional[TextSearchConfig]
|
||||||
|
ledger: Optional[TextSearchConfig]
|
||||||
|
image: Optional[ImageSearchConfig]
|
||||||
|
music: Optional[TextSearchConfig]
|
||||||
|
|
||||||
|
class AsymmetricConfig(ConfigBase):
|
||||||
|
encoder: Optional[str]
|
||||||
|
cross_encoder: Optional[str]
|
||||||
|
|
||||||
|
class ImageSearchTypeConfig(ConfigBase):
|
||||||
|
encoder: Optional[str]
|
||||||
|
|
||||||
|
class SearchTypeConfig(ConfigBase):
|
||||||
|
asymmetric: Optional[AsymmetricConfig]
|
||||||
|
image: Optional[ImageSearchTypeConfig]
|
||||||
|
|
||||||
|
class ConversationProcessorConfig(ConfigBase):
|
||||||
|
openai_api_key: Optional[str]
|
||||||
|
conversation_logfile: Optional[str]
|
||||||
|
conversation_history: Optional[str]
|
||||||
|
|
||||||
|
class ProcessorConfigModel(ConfigBase):
|
||||||
|
conversation: Optional[ConversationProcessorConfig]
|
||||||
|
|
||||||
|
class FullConfig(ConfigBase):
|
||||||
|
content_type: Optional[ContentTypeConfig]
|
||||||
|
search_type: Optional[SearchTypeConfig]
|
||||||
|
processor: Optional[ProcessorConfigModel]
|
|
@ -3,8 +3,8 @@ import pytest
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.utils.config import SearchConfig, TextSearchConfig, ImageSearchConfig
|
|
||||||
from src.search_type import asymmetric, image_search
|
from src.search_type import asymmetric, image_search
|
||||||
|
from src.utils.rawconfig import ContentTypeConfig, ImageSearchConfig, TextSearchConfig
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope='session')
|
@pytest.fixture(scope='session')
|
||||||
|
@ -12,44 +12,40 @@ def model_dir(tmp_path_factory):
|
||||||
model_dir = tmp_path_factory.mktemp('data')
|
model_dir = tmp_path_factory.mktemp('data')
|
||||||
|
|
||||||
# Generate Image Embeddings from Test Images
|
# Generate Image Embeddings from Test Images
|
||||||
search_config = SearchConfig()
|
search_config = ContentTypeConfig()
|
||||||
search_config.image = ImageSearchConfig(
|
search_config.image = ImageSearchConfig(
|
||||||
input_directory = Path('tests/data'),
|
input_directory = 'tests/data',
|
||||||
embeddings_file = model_dir.joinpath('.image_embeddings.pt'),
|
embeddings_file = model_dir.joinpath('.image_embeddings.pt'),
|
||||||
batch_size = 10,
|
batch_size = 10,
|
||||||
use_xmp_metadata = False,
|
use_xmp_metadata = False)
|
||||||
verbose = 2)
|
|
||||||
|
|
||||||
image_search.setup(search_config.image, regenerate=False)
|
image_search.setup(search_config.image, regenerate=False, verbose=True)
|
||||||
|
|
||||||
# Generate Notes Embeddings from Test Notes
|
# Generate Notes Embeddings from Test Notes
|
||||||
search_config.notes = TextSearchConfig(
|
search_config.org = TextSearchConfig(
|
||||||
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')],
|
input_files = ['tests/data/main_readme.org', 'tests/data/interface_emacs_readme.org'],
|
||||||
input_filter = None,
|
input_filter = None,
|
||||||
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
||||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'),
|
embeddings_file = model_dir.joinpath('.note_embeddings.pt'))
|
||||||
verbose = 0)
|
|
||||||
|
|
||||||
asymmetric.setup(search_config.notes, regenerate=False)
|
asymmetric.setup(search_config.org, regenerate=False, verbose=True)
|
||||||
|
|
||||||
return model_dir
|
return model_dir
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope='session')
|
@pytest.fixture(scope='session')
|
||||||
def search_config(model_dir):
|
def search_config(model_dir):
|
||||||
search_config = SearchConfig()
|
search_config = ContentTypeConfig()
|
||||||
search_config.notes = TextSearchConfig(
|
search_config.org = TextSearchConfig(
|
||||||
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')],
|
input_files = ['tests/data/main_readme.org', 'tests/data/interface_emacs_readme.org'],
|
||||||
input_filter = None,
|
input_filter = None,
|
||||||
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
||||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'),
|
embeddings_file = model_dir.joinpath('.note_embeddings.pt'))
|
||||||
verbose = 2)
|
|
||||||
|
|
||||||
search_config.image = ImageSearchConfig(
|
search_config.image = ImageSearchConfig(
|
||||||
input_directory = Path('tests/data'),
|
input_directory = 'tests/data',
|
||||||
embeddings_file = Path('tests/data/.image_embeddings.pt'),
|
embeddings_file = 'tests/data/.image_embeddings.pt',
|
||||||
batch_size = 10,
|
batch_size = 10,
|
||||||
use_xmp_metadata = False,
|
use_xmp_metadata = False)
|
||||||
verbose = 2)
|
|
||||||
|
|
||||||
return search_config
|
return search_config
|
||||||
|
|
|
@ -8,7 +8,7 @@ from src.search_type import asymmetric
|
||||||
def test_asymmetric_setup(search_config):
|
def test_asymmetric_setup(search_config):
|
||||||
# Act
|
# Act
|
||||||
# Regenerate notes embeddings during asymmetric setup
|
# Regenerate notes embeddings during asymmetric setup
|
||||||
notes_model = asymmetric.setup(search_config.notes, regenerate=True)
|
notes_model = asymmetric.setup(search_config.org, regenerate=True)
|
||||||
|
|
||||||
# Assert
|
# Assert
|
||||||
assert len(notes_model.entries) == 10
|
assert len(notes_model.entries) == 10
|
||||||
|
@ -18,7 +18,7 @@ def test_asymmetric_setup(search_config):
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_asymmetric_search(search_config):
|
def test_asymmetric_search(search_config):
|
||||||
# Arrange
|
# Arrange
|
||||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=False)
|
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||||
query = "How to git install application?"
|
query = "How to git install application?"
|
||||||
|
|
||||||
# Act
|
# Act
|
||||||
|
|
|
@ -40,7 +40,7 @@ def test_cli_config_from_file():
|
||||||
assert actual_args.config_file == Path('tests/data/config.yml')
|
assert actual_args.config_file == Path('tests/data/config.yml')
|
||||||
assert actual_args.regenerate == True
|
assert actual_args.regenerate == True
|
||||||
assert actual_args.config is not None
|
assert actual_args.config is not None
|
||||||
assert actual_args.config['content-type']['org']['input-files'] == ['~/first_from_config.org', '~/second_from_config.org']
|
assert actual_args.config.content_type.org.input_files == ['~/first_from_config.org', '~/second_from_config.org']
|
||||||
assert actual_args.verbose == 3
|
assert actual_args.verbose == 3
|
||||||
|
|
||||||
|
|
||||||
|
@ -54,7 +54,7 @@ def test_cli_config_from_cmd_args():
|
||||||
assert actual_args.org_files == ['first.org']
|
assert actual_args.org_files == ['first.org']
|
||||||
assert actual_args.config_file is None
|
assert actual_args.config_file is None
|
||||||
assert actual_args.config is not None
|
assert actual_args.config is not None
|
||||||
assert actual_args.config['content-type']['org']['input-files'] == ['first.org']
|
assert actual_args.config.content_type.org.input_files == ['first.org']
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
|
@ -67,4 +67,4 @@ def test_cli_config_from_cmd_args_override_config_file():
|
||||||
assert actual_args.org_files == ['first.org']
|
assert actual_args.org_files == ['first.org']
|
||||||
assert actual_args.config_file == Path('tests/data/config.yml')
|
assert actual_args.config_file == Path('tests/data/config.yml')
|
||||||
assert actual_args.config is not None
|
assert actual_args.config is not None
|
||||||
assert actual_args.config['content-type']['org']['input-files'] == ['first.org']
|
assert actual_args.config.content_type.org.input_files == ['first.org']
|
||||||
|
|
|
@ -3,18 +3,19 @@ from pathlib import Path
|
||||||
|
|
||||||
# External Packages
|
# External Packages
|
||||||
from fastapi.testclient import TestClient
|
from fastapi.testclient import TestClient
|
||||||
|
import pytest
|
||||||
|
|
||||||
# Internal Packages
|
# Internal Packages
|
||||||
from src.main import app, model, search_config as main_search_config
|
from src.main import app, model, config
|
||||||
from src.search_type import asymmetric, image_search
|
from src.search_type import asymmetric, image_search
|
||||||
from src.utils.helpers import resolve_absolute_path
|
from src.utils.helpers import resolve_absolute_path
|
||||||
|
from src.utils.rawconfig import ContentTypeConfig
|
||||||
|
|
||||||
|
|
||||||
# Arrange
|
# Arrange
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
client = TestClient(app)
|
client = TestClient(app)
|
||||||
|
|
||||||
|
|
||||||
# Test
|
# Test
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_search_with_invalid_search_type():
|
def test_search_with_invalid_search_type():
|
||||||
|
@ -29,9 +30,10 @@ def test_search_with_invalid_search_type():
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_search_with_valid_search_type(search_config):
|
def test_search_with_valid_search_type(search_config: ContentTypeConfig):
|
||||||
# Arrange
|
# Arrange
|
||||||
main_search_config.image = search_config.image
|
config.content_type = search_config
|
||||||
|
# config.content_type.image = search_config.image
|
||||||
for search_type in ["notes", "ledger", "music", "image"]:
|
for search_type in ["notes", "ledger", "music", "image"]:
|
||||||
# Act
|
# Act
|
||||||
response = client.get(f"/search?q=random&t={search_type}")
|
response = client.get(f"/search?q=random&t={search_type}")
|
||||||
|
@ -49,9 +51,9 @@ def test_regenerate_with_invalid_search_type():
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_regenerate_with_valid_search_type(search_config):
|
def test_regenerate_with_valid_search_type(search_config: ContentTypeConfig):
|
||||||
# Arrange
|
# Arrange
|
||||||
main_search_config.image = search_config.image
|
config.content_type = search_config
|
||||||
for search_type in ["notes", "ledger", "music", "image"]:
|
for search_type in ["notes", "ledger", "music", "image"]:
|
||||||
# Act
|
# Act
|
||||||
response = client.get(f"/regenerate?t={search_type}")
|
response = client.get(f"/regenerate?t={search_type}")
|
||||||
|
@ -60,9 +62,10 @@ def test_regenerate_with_valid_search_type(search_config):
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_image_search(search_config):
|
@pytest.mark.skip(reason="Flaky test. Search doesn't always return expected image path.")
|
||||||
|
def test_image_search(search_config: ContentTypeConfig):
|
||||||
# Arrange
|
# Arrange
|
||||||
main_search_config.image = search_config.image
|
config.content_type = search_config
|
||||||
model.image_search = image_search.setup(search_config.image, regenerate=False)
|
model.image_search = image_search.setup(search_config.image, regenerate=False)
|
||||||
query_expected_image_pairs = [("brown kitten next to fallen plant", "kitten_park.jpg"),
|
query_expected_image_pairs = [("brown kitten next to fallen plant", "kitten_park.jpg"),
|
||||||
("a horse and dog on a leash", "horse_dog.jpg"),
|
("a horse and dog on a leash", "horse_dog.jpg"),
|
||||||
|
@ -82,9 +85,9 @@ def test_image_search(search_config):
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_notes_search(search_config):
|
def test_notes_search(search_config: ContentTypeConfig):
|
||||||
# Arrange
|
# Arrange
|
||||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=False)
|
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||||
user_query = "How to git install application?"
|
user_query = "How to git install application?"
|
||||||
|
|
||||||
# Act
|
# Act
|
||||||
|
@ -98,9 +101,9 @@ def test_notes_search(search_config):
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_notes_search_with_include_filter(search_config):
|
def test_notes_search_with_include_filter(search_config: ContentTypeConfig):
|
||||||
# Arrange
|
# Arrange
|
||||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=False)
|
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||||
user_query = "How to git install application? +Emacs"
|
user_query = "How to git install application? +Emacs"
|
||||||
|
|
||||||
# Act
|
# Act
|
||||||
|
@ -114,9 +117,9 @@ def test_notes_search_with_include_filter(search_config):
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------
|
# ----------------------------------------------------------------------------------------------------
|
||||||
def test_notes_search_with_exclude_filter(search_config):
|
def test_notes_search_with_exclude_filter(search_config: ContentTypeConfig):
|
||||||
# Arrange
|
# Arrange
|
||||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=False)
|
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||||
user_query = "How to git install application? -clone"
|
user_query = "How to git install application? -clone"
|
||||||
|
|
||||||
# Act
|
# Act
|
||||||
|
|
12
views/config.html
Normal file
12
views/config.html
Normal file
|
@ -0,0 +1,12 @@
|
||||||
|
<!DOCTYPE html>
|
||||||
|
<head>
|
||||||
|
<title>Set directories for your config file.</title>
|
||||||
|
<link rel="stylesheet" href="views/style.css">
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<form id="config-form">
|
||||||
|
</form>
|
||||||
|
<button id="config-regenerate">regenerate</button>
|
||||||
|
</body>
|
||||||
|
<script src="views/scripts/config.js"></script>
|
||||||
|
</html>
|
124
views/scripts/config.js
Normal file
124
views/scripts/config.js
Normal file
|
@ -0,0 +1,124 @@
|
||||||
|
// Retrieve elements from the DOM.
|
||||||
|
var showConfig = document.getElementById("show-config");
|
||||||
|
var configForm = document.getElementById("config-form");
|
||||||
|
var regenerateButton = document.getElementById("config-regenerate");
|
||||||
|
|
||||||
|
// Global variables.
|
||||||
|
var rawConfig = {};
|
||||||
|
var emptyValueDefault = "🖊️";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Fetch the existing config file.
|
||||||
|
*/
|
||||||
|
fetch("/config")
|
||||||
|
.then(response => response.json())
|
||||||
|
.then(data => {
|
||||||
|
rawConfig = data;
|
||||||
|
configForm.style.display = "block";
|
||||||
|
processChildren(configForm, data);
|
||||||
|
|
||||||
|
var submitButton = document.createElement("button");
|
||||||
|
submitButton.type = "submit";
|
||||||
|
submitButton.innerHTML = "update";
|
||||||
|
configForm.appendChild(submitButton);
|
||||||
|
|
||||||
|
// The config form's submit handler.
|
||||||
|
configForm.addEventListener("submit", (event) => {
|
||||||
|
event.preventDefault();
|
||||||
|
console.log(rawConfig);
|
||||||
|
const response = fetch("/config", {
|
||||||
|
method: "POST",
|
||||||
|
credentials: "same-origin",
|
||||||
|
headers: {
|
||||||
|
'Content-Type': 'application/json'
|
||||||
|
},
|
||||||
|
body: JSON.stringify(rawConfig)
|
||||||
|
}).then(response => response.json())
|
||||||
|
.then((data) => console.log(data));
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The click handler for the Regenerate button.
|
||||||
|
*/
|
||||||
|
regenerateButton.addEventListener("click", (event) => {
|
||||||
|
event.preventDefault();
|
||||||
|
regenerateButton.style.cursor = "progress";
|
||||||
|
regenerateButton.disabled = true;
|
||||||
|
fetch("/regenerate")
|
||||||
|
.then(response => response.json())
|
||||||
|
.then(data => {
|
||||||
|
regenerateButton.style.cursor = "pointer";
|
||||||
|
regenerateButton.disabled = false;
|
||||||
|
console.log(data);
|
||||||
|
});
|
||||||
|
})
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Adds config elements to the DOM representing the sub-components
|
||||||
|
* of one of the fields in the raw config file.
|
||||||
|
* @param {the parent element} element
|
||||||
|
* @param {the data to be rendered for this element and its children} data
|
||||||
|
*/
|
||||||
|
function processChildren(element, data) {
|
||||||
|
for (let key in data) {
|
||||||
|
var child = document.createElement("div");
|
||||||
|
child.id = key;
|
||||||
|
child.className = "config-element";
|
||||||
|
child.appendChild(document.createTextNode(key + ": "));
|
||||||
|
if (data[key] === Object(data[key]) && !Array.isArray(data[key])) {
|
||||||
|
child.className+=" config-title";
|
||||||
|
processChildren(child, data[key]);
|
||||||
|
} else {
|
||||||
|
child.appendChild(createValueNode(data, key));
|
||||||
|
}
|
||||||
|
element.appendChild(child);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Takes an element, and replaces it with an editable
|
||||||
|
* element with the same data in place.
|
||||||
|
* @param {the original element to be replaced} original
|
||||||
|
* @param {the source data to be rendered for the new element} data
|
||||||
|
* @param {the key for this input in the source data} key
|
||||||
|
*/
|
||||||
|
function makeElementEditable(original, data, key) {
|
||||||
|
original.addEventListener("click", () => {
|
||||||
|
var inputNewText = document.createElement("input");
|
||||||
|
inputNewText.type = "text";
|
||||||
|
inputNewText.className = "config-element-edit";
|
||||||
|
inputNewText.value = (original.textContent == emptyValueDefault) ? "" : original.textContent;
|
||||||
|
fixInputOnFocusOut(inputNewText, data, key);
|
||||||
|
original.parentNode.replaceChild(inputNewText, original);
|
||||||
|
inputNewText.focus();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a node corresponding to the value of a config element.
|
||||||
|
* @param {the source data} data
|
||||||
|
* @param {the key corresponding to this node's data} key
|
||||||
|
* @returns A new element which corresponds to the value in some field.
|
||||||
|
*/
|
||||||
|
function createValueNode(data, key) {
|
||||||
|
var valueElement = document.createElement("span");
|
||||||
|
valueElement.className = "config-element-value";
|
||||||
|
valueElement.textContent = !data[key] ? emptyValueDefault : data[key];
|
||||||
|
makeElementEditable(valueElement, data, key);
|
||||||
|
return valueElement;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Replaces an existing input element with an element with the same data, which is not an input.
|
||||||
|
* If the input data for this element was changed, update the corresponding data in the raw config.
|
||||||
|
* @param {the original element to be replaced} original
|
||||||
|
* @param {the source data} data
|
||||||
|
* @param {the key corresponding to this node's data} key
|
||||||
|
*/
|
||||||
|
function fixInputOnFocusOut(original, data, key) {
|
||||||
|
original.addEventListener("blur", () => {
|
||||||
|
data[key] = (original.value != emptyValueDefault) ? original.value : "";
|
||||||
|
original.parentNode.replaceChild(createValueNode(data, key), original);
|
||||||
|
})
|
||||||
|
}
|
29
views/style.css
Normal file
29
views/style.css
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
:root {
|
||||||
|
--primary-color: #ffffff;
|
||||||
|
--bold-color: #2073ee;
|
||||||
|
--complementary-color: #124408;
|
||||||
|
--accent-color-0: #57f0b5;
|
||||||
|
}
|
||||||
|
|
||||||
|
input[type=text] {
|
||||||
|
width: 40%;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.config-element {
|
||||||
|
color: var(--bold-color);
|
||||||
|
margin: 8px;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.config-title {
|
||||||
|
font-weight: bold;
|
||||||
|
}
|
||||||
|
|
||||||
|
span.config-element-value {
|
||||||
|
color: var(--complementary-color);
|
||||||
|
font-weight: normal;
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
button {
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
Loading…
Reference in a new issue