mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Track Usage Metrics in Chat API. Track Running Cost, Accuracy in Evals (#985)
- Track, return cost and usage metrics in chat api response Track input, output token usage and cost of interactions with openai, anthropic and google chat models for each call to the khoj chat api - Collect, display and store costs & accuracy of eval run currently in progress This provides more insight into eval runs during execution instead of having to wait until the eval run completes.
This commit is contained in:
commit
6f1adcfe67
12 changed files with 230 additions and 67 deletions
11
.github/workflows/run_evals.yml
vendored
11
.github/workflows/run_evals.yml
vendored
|
@ -1,9 +1,10 @@
|
|||
name: Run Khoj Evals
|
||||
name: eval
|
||||
|
||||
on:
|
||||
# Run on every releases
|
||||
release:
|
||||
types: [published]
|
||||
# Run on every release
|
||||
push:
|
||||
tags:
|
||||
- "*"
|
||||
# Allow manual triggers from GitHub UI
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
|
@ -82,7 +83,7 @@ jobs:
|
|||
sed -i 's/dynamic = \["version"\]/version = "${{ steps.hatch.outputs.version }}"/' pyproject.toml
|
||||
pip install --upgrade .[dev]
|
||||
|
||||
- name: 📝 Run Evals
|
||||
- name: 📝 Run Eval
|
||||
env:
|
||||
KHOJ_MODE: ${{ matrix.khoj_mode }}
|
||||
SAMPLE_SIZE: ${{ inputs.sample_size }}
|
||||
|
|
|
@ -945,7 +945,7 @@ export class KhojChatView extends KhojPaneView {
|
|||
console.log("Started streaming", new Date());
|
||||
} else if (chunk.type === 'end_llm_response') {
|
||||
console.log("Stopped streaming", new Date());
|
||||
|
||||
} else if (chunk.type === 'end_response') {
|
||||
// Automatically respond with voice if the subscribed user has sent voice message
|
||||
if (this.chatMessageState.isVoice && this.setting.userInfo?.is_active)
|
||||
this.textToSpeech(this.chatMessageState.rawResponse);
|
||||
|
|
|
@ -133,7 +133,7 @@ export function processMessageChunk(
|
|||
console.log(`Started streaming: ${new Date()}`);
|
||||
} else if (chunk.type === "end_llm_response") {
|
||||
console.log(`Completed streaming: ${new Date()}`);
|
||||
|
||||
} else if (chunk.type === "end_response") {
|
||||
// Append any references after all the data has been streamed
|
||||
if (codeContext) currentMessage.codeContext = codeContext;
|
||||
if (onlineContext) currentMessage.onlineContext = onlineContext;
|
||||
|
|
|
@ -18,7 +18,7 @@ from khoj.processor.conversation.utils import (
|
|||
get_image_from_url,
|
||||
)
|
||||
from khoj.utils import state
|
||||
from khoj.utils.helpers import in_debug_mode, is_none_or_empty
|
||||
from khoj.utils.helpers import get_chat_usage_metrics, in_debug_mode, is_none_or_empty
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -59,6 +59,7 @@ def anthropic_completion_with_backoff(
|
|||
aggregated_response = "{" if response_type == "json_object" else ""
|
||||
max_tokens = max_tokens or DEFAULT_MAX_TOKENS_ANTHROPIC
|
||||
|
||||
final_message = None
|
||||
model_kwargs = model_kwargs or dict()
|
||||
if system_prompt:
|
||||
model_kwargs["system"] = system_prompt
|
||||
|
@ -73,6 +74,12 @@ def anthropic_completion_with_backoff(
|
|||
) as stream:
|
||||
for text in stream.text_stream:
|
||||
aggregated_response += text
|
||||
final_message = stream.get_final_message()
|
||||
|
||||
# Calculate cost of chat
|
||||
input_tokens = final_message.usage.input_tokens
|
||||
output_tokens = final_message.usage.output_tokens
|
||||
tracer["usage"] = get_chat_usage_metrics(model_name, input_tokens, output_tokens, tracer.get("usage"))
|
||||
|
||||
# Save conversation trace
|
||||
tracer["chat_model"] = model_name
|
||||
|
@ -126,6 +133,7 @@ def anthropic_llm_thread(
|
|||
]
|
||||
|
||||
aggregated_response = ""
|
||||
final_message = None
|
||||
with client.messages.stream(
|
||||
messages=formatted_messages,
|
||||
model=model_name, # type: ignore
|
||||
|
@ -138,6 +146,12 @@ def anthropic_llm_thread(
|
|||
for text in stream.text_stream:
|
||||
aggregated_response += text
|
||||
g.send(text)
|
||||
final_message = stream.get_final_message()
|
||||
|
||||
# Calculate cost of chat
|
||||
input_tokens = final_message.usage.input_tokens
|
||||
output_tokens = final_message.usage.output_tokens
|
||||
tracer["usage"] = get_chat_usage_metrics(model_name, input_tokens, output_tokens, tracer.get("usage"))
|
||||
|
||||
# Save conversation trace
|
||||
tracer["chat_model"] = model_name
|
||||
|
|
|
@ -25,7 +25,7 @@ from khoj.processor.conversation.utils import (
|
|||
get_image_from_url,
|
||||
)
|
||||
from khoj.utils import state
|
||||
from khoj.utils.helpers import in_debug_mode, is_none_or_empty
|
||||
from khoj.utils.helpers import get_chat_usage_metrics, in_debug_mode, is_none_or_empty
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -68,6 +68,7 @@ def gemini_completion_with_backoff(
|
|||
response = chat_session.send_message(formatted_messages[-1]["parts"])
|
||||
response_text = response.text
|
||||
except StopCandidateException as e:
|
||||
response = None
|
||||
response_text, _ = handle_gemini_response(e.args)
|
||||
# Respond with reason for stopping
|
||||
logger.warning(
|
||||
|
@ -75,6 +76,11 @@ def gemini_completion_with_backoff(
|
|||
+ f"Last Message by {messages[-1].role}: {messages[-1].content}"
|
||||
)
|
||||
|
||||
# Aggregate cost of chat
|
||||
input_tokens = response.usage_metadata.prompt_token_count if response else 0
|
||||
output_tokens = response.usage_metadata.candidates_token_count if response else 0
|
||||
tracer["usage"] = get_chat_usage_metrics(model_name, input_tokens, output_tokens, tracer.get("usage"))
|
||||
|
||||
# Save conversation trace
|
||||
tracer["chat_model"] = model_name
|
||||
tracer["temperature"] = temperature
|
||||
|
@ -146,6 +152,11 @@ def gemini_llm_thread(
|
|||
if stopped:
|
||||
raise StopCandidateException(message)
|
||||
|
||||
# Calculate cost of chat
|
||||
input_tokens = chunk.usage_metadata.prompt_token_count
|
||||
output_tokens = chunk.usage_metadata.candidates_token_count
|
||||
tracer["usage"] = get_chat_usage_metrics(model_name, input_tokens, output_tokens, tracer.get("usage"))
|
||||
|
||||
# Save conversation trace
|
||||
tracer["chat_model"] = model_name
|
||||
tracer["temperature"] = temperature
|
||||
|
|
|
@ -4,6 +4,8 @@ from threading import Thread
|
|||
from typing import Dict
|
||||
|
||||
import openai
|
||||
from openai.types.chat.chat_completion import ChatCompletion
|
||||
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
|
||||
from tenacity import (
|
||||
before_sleep_log,
|
||||
retry,
|
||||
|
@ -18,7 +20,7 @@ from khoj.processor.conversation.utils import (
|
|||
commit_conversation_trace,
|
||||
)
|
||||
from khoj.utils import state
|
||||
from khoj.utils.helpers import in_debug_mode
|
||||
from khoj.utils.helpers import get_chat_usage_metrics, in_debug_mode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -63,27 +65,34 @@ def completion_with_backoff(
|
|||
if os.getenv("KHOJ_LLM_SEED"):
|
||||
model_kwargs["seed"] = int(os.getenv("KHOJ_LLM_SEED"))
|
||||
|
||||
chat = client.chat.completions.create(
|
||||
stream=stream,
|
||||
chat: ChatCompletion | openai.Stream[ChatCompletionChunk] = client.chat.completions.create(
|
||||
messages=formatted_messages, # type: ignore
|
||||
model=model, # type: ignore
|
||||
stream=stream,
|
||||
stream_options={"include_usage": True} if stream else {},
|
||||
temperature=temperature,
|
||||
timeout=20,
|
||||
**(model_kwargs or dict()),
|
||||
)
|
||||
|
||||
if not stream:
|
||||
return chat.choices[0].message.content
|
||||
|
||||
aggregated_response = ""
|
||||
for chunk in chat:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
delta_chunk = chunk.choices[0].delta # type: ignore
|
||||
if isinstance(delta_chunk, str):
|
||||
aggregated_response += delta_chunk
|
||||
elif delta_chunk.content:
|
||||
aggregated_response += delta_chunk.content
|
||||
if not stream:
|
||||
chunk = chat
|
||||
aggregated_response = chunk.choices[0].message.content
|
||||
else:
|
||||
for chunk in chat:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
delta_chunk = chunk.choices[0].delta # type: ignore
|
||||
if isinstance(delta_chunk, str):
|
||||
aggregated_response += delta_chunk
|
||||
elif delta_chunk.content:
|
||||
aggregated_response += delta_chunk.content
|
||||
|
||||
# Calculate cost of chat
|
||||
input_tokens = chunk.usage.prompt_tokens if hasattr(chunk, "usage") and chunk.usage else 0
|
||||
output_tokens = chunk.usage.completion_tokens if hasattr(chunk, "usage") and chunk.usage else 0
|
||||
tracer["usage"] = get_chat_usage_metrics(model, input_tokens, output_tokens, tracer.get("usage"))
|
||||
|
||||
# Save conversation trace
|
||||
tracer["chat_model"] = model
|
||||
|
@ -162,10 +171,11 @@ def llm_thread(
|
|||
if os.getenv("KHOJ_LLM_SEED"):
|
||||
model_kwargs["seed"] = int(os.getenv("KHOJ_LLM_SEED"))
|
||||
|
||||
chat = client.chat.completions.create(
|
||||
stream=stream,
|
||||
chat: ChatCompletion | openai.Stream[ChatCompletionChunk] = client.chat.completions.create(
|
||||
messages=formatted_messages,
|
||||
model=model_name, # type: ignore
|
||||
stream=stream,
|
||||
stream_options={"include_usage": True} if stream else {},
|
||||
temperature=temperature,
|
||||
timeout=20,
|
||||
**(model_kwargs or dict()),
|
||||
|
@ -173,7 +183,8 @@ def llm_thread(
|
|||
|
||||
aggregated_response = ""
|
||||
if not stream:
|
||||
aggregated_response = chat.choices[0].message.content
|
||||
chunk = chat
|
||||
aggregated_response = chunk.choices[0].message.content
|
||||
g.send(aggregated_response)
|
||||
else:
|
||||
for chunk in chat:
|
||||
|
@ -189,6 +200,11 @@ def llm_thread(
|
|||
aggregated_response += text_chunk
|
||||
g.send(text_chunk)
|
||||
|
||||
# Calculate cost of chat
|
||||
input_tokens = chunk.usage.prompt_tokens if hasattr(chunk, "usage") and chunk.usage else 0
|
||||
output_tokens = chunk.usage.completion_tokens if hasattr(chunk, "usage") and chunk.usage else 0
|
||||
tracer["usage"] = get_chat_usage_metrics(model_name, input_tokens, output_tokens, tracer.get("usage"))
|
||||
|
||||
# Save conversation trace
|
||||
tracer["chat_model"] = model_name
|
||||
tracer["temperature"] = temperature
|
||||
|
|
|
@ -5,7 +5,6 @@ import math
|
|||
import mimetypes
|
||||
import os
|
||||
import queue
|
||||
import re
|
||||
import uuid
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
|
@ -57,7 +56,7 @@ model_to_prompt_size = {
|
|||
"gemini-1.5-flash": 20000,
|
||||
"gemini-1.5-pro": 20000,
|
||||
# Anthropic Models
|
||||
"claude-3-5-sonnet-20240620": 20000,
|
||||
"claude-3-5-sonnet-20241022": 20000,
|
||||
"claude-3-5-haiku-20241022": 20000,
|
||||
# Offline Models
|
||||
"bartowski/Meta-Llama-3.1-8B-Instruct-GGUF": 20000,
|
||||
|
@ -213,6 +212,8 @@ class ChatEvent(Enum):
|
|||
REFERENCES = "references"
|
||||
STATUS = "status"
|
||||
METADATA = "metadata"
|
||||
USAGE = "usage"
|
||||
END_RESPONSE = "end_response"
|
||||
|
||||
|
||||
def message_to_log(
|
||||
|
|
|
@ -667,27 +667,37 @@ async def chat(
|
|||
finally:
|
||||
yield event_delimiter
|
||||
|
||||
async def send_llm_response(response: str):
|
||||
async def send_llm_response(response: str, usage: dict = None):
|
||||
# Send Chat Response
|
||||
async for result in send_event(ChatEvent.START_LLM_RESPONSE, ""):
|
||||
yield result
|
||||
async for result in send_event(ChatEvent.MESSAGE, response):
|
||||
yield result
|
||||
async for result in send_event(ChatEvent.END_LLM_RESPONSE, ""):
|
||||
yield result
|
||||
# Send Usage Metadata once llm interactions are complete
|
||||
if usage:
|
||||
async for event in send_event(ChatEvent.USAGE, usage):
|
||||
yield event
|
||||
async for result in send_event(ChatEvent.END_RESPONSE, ""):
|
||||
yield result
|
||||
|
||||
def collect_telemetry():
|
||||
# Gather chat response telemetry
|
||||
nonlocal chat_metadata
|
||||
latency = time.perf_counter() - start_time
|
||||
cmd_set = set([cmd.value for cmd in conversation_commands])
|
||||
cost = (tracer.get("usage", {}) or {}).get("cost", 0)
|
||||
chat_metadata = chat_metadata or {}
|
||||
chat_metadata["conversation_command"] = cmd_set
|
||||
chat_metadata["agent"] = conversation.agent.slug if conversation and conversation.agent else None
|
||||
chat_metadata["latency"] = f"{latency:.3f}"
|
||||
chat_metadata["ttft_latency"] = f"{ttft:.3f}"
|
||||
chat_metadata["usage"] = tracer.get("usage")
|
||||
|
||||
logger.info(f"Chat response time to first token: {ttft:.3f} seconds")
|
||||
logger.info(f"Chat response total time: {latency:.3f} seconds")
|
||||
logger.info(f"Chat response cost: ${cost:.5f}")
|
||||
update_telemetry_state(
|
||||
request=request,
|
||||
telemetry_type="api",
|
||||
|
@ -699,7 +709,7 @@ async def chat(
|
|||
)
|
||||
|
||||
if is_query_empty(q):
|
||||
async for result in send_llm_response("Please ask your query to get started."):
|
||||
async for result in send_llm_response("Please ask your query to get started.", tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -713,7 +723,7 @@ async def chat(
|
|||
create_new=body.create_new,
|
||||
)
|
||||
if not conversation:
|
||||
async for result in send_llm_response(f"Conversation {conversation_id} not found"):
|
||||
async for result in send_llm_response(f"Conversation {conversation_id} not found", tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
conversation_id = conversation.id
|
||||
|
@ -777,7 +787,7 @@ async def chat(
|
|||
await conversation_command_rate_limiter.update_and_check_if_valid(request, cmd)
|
||||
q = q.replace(f"/{cmd.value}", "").strip()
|
||||
except HTTPException as e:
|
||||
async for result in send_llm_response(str(e.detail)):
|
||||
async for result in send_llm_response(str(e.detail), tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -834,7 +844,7 @@ async def chat(
|
|||
agent_has_entries = await EntryAdapters.aagent_has_entries(agent)
|
||||
if len(file_filters) == 0 and not agent_has_entries:
|
||||
response_log = "No files selected for summarization. Please add files using the section on the left."
|
||||
async for result in send_llm_response(response_log):
|
||||
async for result in send_llm_response(response_log, tracer.get("usage")):
|
||||
yield result
|
||||
else:
|
||||
async for response in generate_summary_from_files(
|
||||
|
@ -853,7 +863,7 @@ async def chat(
|
|||
else:
|
||||
if isinstance(response, str):
|
||||
response_log = response
|
||||
async for result in send_llm_response(response):
|
||||
async for result in send_llm_response(response, tracer.get("usage")):
|
||||
yield result
|
||||
|
||||
await sync_to_async(save_to_conversation_log)(
|
||||
|
@ -880,7 +890,7 @@ async def chat(
|
|||
conversation_config = await ConversationAdapters.aget_default_conversation_config(user)
|
||||
model_type = conversation_config.model_type
|
||||
formatted_help = help_message.format(model=model_type, version=state.khoj_version, device=get_device())
|
||||
async for result in send_llm_response(formatted_help):
|
||||
async for result in send_llm_response(formatted_help, tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
# Adding specification to search online specifically on khoj.dev pages.
|
||||
|
@ -895,7 +905,7 @@ async def chat(
|
|||
except Exception as e:
|
||||
logger.error(f"Error scheduling task {q} for {user.email}: {e}")
|
||||
error_message = f"Unable to create automation. Ensure the automation doesn't already exist."
|
||||
async for result in send_llm_response(error_message):
|
||||
async for result in send_llm_response(error_message, tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -916,7 +926,7 @@ async def chat(
|
|||
raw_query_files=raw_query_files,
|
||||
tracer=tracer,
|
||||
)
|
||||
async for result in send_llm_response(llm_response):
|
||||
async for result in send_llm_response(llm_response, tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -963,7 +973,7 @@ async def chat(
|
|||
yield result
|
||||
|
||||
if conversation_commands == [ConversationCommand.Notes] and not await EntryAdapters.auser_has_entries(user):
|
||||
async for result in send_llm_response(f"{no_entries_found.format()}"):
|
||||
async for result in send_llm_response(f"{no_entries_found.format()}", tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -1105,7 +1115,7 @@ async def chat(
|
|||
"detail": improved_image_prompt,
|
||||
"image": None,
|
||||
}
|
||||
async for result in send_llm_response(json.dumps(content_obj)):
|
||||
async for result in send_llm_response(json.dumps(content_obj), tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -1132,7 +1142,7 @@ async def chat(
|
|||
"inferredQueries": [improved_image_prompt],
|
||||
"image": generated_image,
|
||||
}
|
||||
async for result in send_llm_response(json.dumps(content_obj)):
|
||||
async for result in send_llm_response(json.dumps(content_obj), tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -1166,7 +1176,7 @@ async def chat(
|
|||
diagram_description = excalidraw_diagram_description
|
||||
else:
|
||||
error_message = "Failed to generate diagram. Please try again later."
|
||||
async for result in send_llm_response(error_message):
|
||||
async for result in send_llm_response(error_message, tracer.get("usage")):
|
||||
yield result
|
||||
|
||||
await sync_to_async(save_to_conversation_log)(
|
||||
|
@ -1213,7 +1223,7 @@ async def chat(
|
|||
tracer=tracer,
|
||||
)
|
||||
|
||||
async for result in send_llm_response(json.dumps(content_obj)):
|
||||
async for result in send_llm_response(json.dumps(content_obj), tracer.get("usage")):
|
||||
yield result
|
||||
return
|
||||
|
||||
|
@ -1252,6 +1262,11 @@ async def chat(
|
|||
if item is None:
|
||||
async for result in send_event(ChatEvent.END_LLM_RESPONSE, ""):
|
||||
yield result
|
||||
# Send Usage Metadata once llm interactions are complete
|
||||
async for event in send_event(ChatEvent.USAGE, tracer.get("usage")):
|
||||
yield event
|
||||
async for result in send_event(ChatEvent.END_RESPONSE, ""):
|
||||
yield result
|
||||
logger.debug("Finished streaming response")
|
||||
return
|
||||
if not connection_alive or not continue_stream:
|
||||
|
|
|
@ -1770,6 +1770,7 @@ Manage your automations [here](/automations).
|
|||
class MessageProcessor:
|
||||
def __init__(self):
|
||||
self.references = {}
|
||||
self.usage = {}
|
||||
self.raw_response = ""
|
||||
|
||||
def convert_message_chunk_to_json(self, raw_chunk: str) -> Dict[str, Any]:
|
||||
|
@ -1793,6 +1794,8 @@ class MessageProcessor:
|
|||
chunk_type = ChatEvent(chunk["type"])
|
||||
if chunk_type == ChatEvent.REFERENCES:
|
||||
self.references = chunk["data"]
|
||||
elif chunk_type == ChatEvent.USAGE:
|
||||
self.usage = chunk["data"]
|
||||
elif chunk_type == ChatEvent.MESSAGE:
|
||||
chunk_data = chunk["data"]
|
||||
if isinstance(chunk_data, dict):
|
||||
|
@ -1837,7 +1840,7 @@ async def read_chat_stream(response_iterator: AsyncGenerator[str, None]) -> Dict
|
|||
if buffer:
|
||||
processor.process_message_chunk(buffer)
|
||||
|
||||
return {"response": processor.raw_response, "references": processor.references}
|
||||
return {"response": processor.raw_response, "references": processor.references, "usage": processor.usage}
|
||||
|
||||
|
||||
def get_user_config(user: KhojUser, request: Request, is_detailed: bool = False):
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
app_root_directory = Path(__file__).parent.parent.parent
|
||||
web_directory = app_root_directory / "khoj/interface/web/"
|
||||
|
@ -31,3 +32,19 @@ default_config = {
|
|||
"image": {"encoder": "sentence-transformers/clip-ViT-B-32", "model_directory": "~/.khoj/search/image/"},
|
||||
},
|
||||
}
|
||||
|
||||
model_to_cost: Dict[str, Dict[str, float]] = {
|
||||
# OpenAI Pricing: https://openai.com/api/pricing/
|
||||
"gpt-4o": {"input": 2.50, "output": 10.00},
|
||||
"gpt-4o-mini": {"input": 0.15, "output": 0.60},
|
||||
"o1-preview": {"input": 15.0, "output": 60.00},
|
||||
"o1-mini": {"input": 3.0, "output": 12.0},
|
||||
# Gemini Pricing: https://ai.google.dev/pricing
|
||||
"gemini-1.5-flash": {"input": 0.075, "output": 0.30},
|
||||
"gemini-1.5-flash-002": {"input": 0.075, "output": 0.30},
|
||||
"gemini-1.5-pro": {"input": 1.25, "output": 5.00},
|
||||
"gemini-1.5-pro-002": {"input": 1.25, "output": 5.00},
|
||||
# Anthropic Pricing: https://www.anthropic.com/pricing#anthropic-api_
|
||||
"claude-3-5-sonnet-20241022": {"input": 3.0, "output": 15.0},
|
||||
"claude-3-5-haiku-20241022": {"input": 1.0, "output": 5.0},
|
||||
}
|
||||
|
|
|
@ -540,3 +540,27 @@ def get_country_code_from_timezone(tz: str) -> str:
|
|||
def get_country_name_from_timezone(tz: str) -> str:
|
||||
"""Get country name from timezone"""
|
||||
return country_names.get(get_country_code_from_timezone(tz), "United States")
|
||||
|
||||
|
||||
def get_cost_of_chat_message(model_name: str, input_tokens: int = 0, output_tokens: int = 0, prev_cost: float = 0.0):
|
||||
"""
|
||||
Calculate cost of chat message based on input and output tokens
|
||||
"""
|
||||
|
||||
# Calculate cost of input and output tokens. Costs are per million tokens
|
||||
input_cost = constants.model_to_cost.get(model_name, {}).get("input", 0) * (input_tokens / 1e6)
|
||||
output_cost = constants.model_to_cost.get(model_name, {}).get("output", 0) * (output_tokens / 1e6)
|
||||
|
||||
return input_cost + output_cost + prev_cost
|
||||
|
||||
|
||||
def get_chat_usage_metrics(model_name: str, input_tokens: int = 0, output_tokens: int = 0, usage: dict = {}):
|
||||
"""
|
||||
Get usage metrics for chat message based on input and output tokens
|
||||
"""
|
||||
prev_usage = usage or {"input_tokens": 0, "output_tokens": 0, "cost": 0.0}
|
||||
return {
|
||||
"input_tokens": prev_usage["input_tokens"] + input_tokens,
|
||||
"output_tokens": prev_usage["output_tokens"] + output_tokens,
|
||||
"cost": get_cost_of_chat_message(model_name, input_tokens, output_tokens, prev_cost=prev_usage["cost"]),
|
||||
}
|
||||
|
|
|
@ -6,13 +6,15 @@ import os
|
|||
import time
|
||||
from datetime import datetime
|
||||
from io import StringIO
|
||||
from textwrap import dedent
|
||||
from threading import Lock
|
||||
from typing import Any, Dict
|
||||
|
||||
import pandas as pd
|
||||
import requests
|
||||
from datasets import Dataset, load_dataset
|
||||
|
||||
from khoj.utils.helpers import is_none_or_empty, timer
|
||||
from khoj.utils.helpers import get_cost_of_chat_message, is_none_or_empty, timer
|
||||
|
||||
# Configure root logger
|
||||
logging.basicConfig(level=logging.INFO, format="%(message)s")
|
||||
|
@ -38,6 +40,28 @@ BATCH_SIZE = int(
|
|||
SLEEP_SECONDS = 3 if KHOJ_MODE == "general" else 1 # Sleep between API calls to avoid rate limiting
|
||||
|
||||
|
||||
class Counter:
|
||||
"""Thread-safe counter for tracking metrics"""
|
||||
|
||||
def __init__(self, value=0.0):
|
||||
self.value = value
|
||||
self.lock = Lock()
|
||||
|
||||
def add(self, amount):
|
||||
with self.lock:
|
||||
self.value += amount
|
||||
|
||||
def get(self):
|
||||
with self.lock:
|
||||
return self.value
|
||||
|
||||
|
||||
# Track running metrics while evaluating
|
||||
running_cost = Counter()
|
||||
running_true_count = Counter(0)
|
||||
running_false_count = Counter(0)
|
||||
|
||||
|
||||
def load_frames_dataset():
|
||||
"""
|
||||
Load the Google FRAMES benchmark dataset from HuggingFace
|
||||
|
@ -104,25 +128,31 @@ def load_simpleqa_dataset():
|
|||
return None
|
||||
|
||||
|
||||
def get_agent_response(prompt: str) -> str:
|
||||
def get_agent_response(prompt: str) -> Dict[str, Any]:
|
||||
"""Get response from the Khoj API"""
|
||||
# Set headers
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if not is_none_or_empty(KHOJ_API_KEY):
|
||||
headers["Authorization"] = f"Bearer {KHOJ_API_KEY}"
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
KHOJ_CHAT_API_URL,
|
||||
headers={"Content-Type": "application/json", "Authorization": f"Bearer {KHOJ_API_KEY}"},
|
||||
headers=headers,
|
||||
json={
|
||||
"q": prompt,
|
||||
"create_new": True,
|
||||
},
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json().get("response", "")
|
||||
response_json = response.json()
|
||||
return {"response": response_json.get("response", ""), "usage": response_json.get("usage", {})}
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting agent response: {e}")
|
||||
return ""
|
||||
return {"response": "", "usage": {}}
|
||||
|
||||
|
||||
def evaluate_response(query: str, agent_response: str, ground_truth: str) -> Dict[str, Any]:
|
||||
def evaluate_response(query: str, agent_response: str, ground_truth: str) -> tuple[bool | None, str, float]:
|
||||
"""Evaluate Khoj response against benchmark ground truth using Gemini"""
|
||||
evaluation_prompt = f"""
|
||||
Compare the following agent response with the ground truth answer.
|
||||
|
@ -147,10 +177,16 @@ def evaluate_response(query: str, agent_response: str, ground_truth: str) -> Dic
|
|||
},
|
||||
)
|
||||
response.raise_for_status()
|
||||
response_json = response.json()
|
||||
|
||||
# Update cost of evaluation
|
||||
input_tokens = response_json["usageMetadata"]["promptTokenCount"]
|
||||
ouput_tokens = response_json["usageMetadata"]["candidatesTokenCount"]
|
||||
cost = get_cost_of_chat_message(GEMINI_EVAL_MODEL, input_tokens, ouput_tokens)
|
||||
|
||||
# Parse evaluation response
|
||||
eval_response: dict[str, str] = json.loads(
|
||||
clean_json(response.json()["candidates"][0]["content"]["parts"][0]["text"])
|
||||
clean_json(response_json["candidates"][0]["content"]["parts"][0]["text"])
|
||||
)
|
||||
decision = str(eval_response.get("decision", "")).upper() == "TRUE"
|
||||
explanation = eval_response.get("explanation", "")
|
||||
|
@ -158,13 +194,14 @@ def evaluate_response(query: str, agent_response: str, ground_truth: str) -> Dic
|
|||
if "503 Service Error" in explanation:
|
||||
decision = None
|
||||
# Extract decision and explanation from structured response
|
||||
return decision, explanation
|
||||
return decision, explanation, cost
|
||||
except Exception as e:
|
||||
logger.error(f"Error in evaluation: {e}")
|
||||
return None, f"Evaluation failed: {str(e)}"
|
||||
return None, f"Evaluation failed: {str(e)}", 0.0
|
||||
|
||||
|
||||
def process_batch(batch, batch_start, results, dataset_length):
|
||||
global running_cost
|
||||
for idx, (prompt, answer, reasoning_type) in enumerate(batch):
|
||||
current_index = batch_start + idx
|
||||
logger.info(f"Processing example: {current_index}/{dataset_length}")
|
||||
|
@ -173,14 +210,16 @@ def process_batch(batch, batch_start, results, dataset_length):
|
|||
prompt = f"/{KHOJ_MODE} {prompt}" if KHOJ_MODE and not prompt.startswith(f"/{KHOJ_MODE}") else prompt
|
||||
|
||||
# Get agent response
|
||||
agent_response = get_agent_response(prompt)
|
||||
response = get_agent_response(prompt)
|
||||
agent_response = response["response"]
|
||||
agent_usage = response["usage"]
|
||||
|
||||
# Evaluate response
|
||||
if is_none_or_empty(agent_response):
|
||||
decision = None
|
||||
explanation = "Agent response is empty. This maybe due to a service error."
|
||||
else:
|
||||
decision, explanation = evaluate_response(prompt, agent_response, answer)
|
||||
decision, explanation, eval_cost = evaluate_response(prompt, agent_response, answer)
|
||||
|
||||
# Store results
|
||||
results.append(
|
||||
|
@ -192,17 +231,38 @@ def process_batch(batch, batch_start, results, dataset_length):
|
|||
"evaluation_decision": decision,
|
||||
"evaluation_explanation": explanation,
|
||||
"reasoning_type": reasoning_type,
|
||||
"usage": agent_usage,
|
||||
}
|
||||
)
|
||||
|
||||
# Log results
|
||||
# Update running cost
|
||||
query_cost = float(agent_usage.get("cost", 0.0))
|
||||
running_cost.add(query_cost + eval_cost)
|
||||
|
||||
# Update running accuracy
|
||||
running_accuracy = 0.0
|
||||
if decision is not None:
|
||||
running_true_count.add(1) if decision == True else running_false_count.add(1)
|
||||
running_accuracy = running_true_count.get() / (running_true_count.get() + running_false_count.get())
|
||||
|
||||
## Log results
|
||||
decision_color = {True: "green", None: "blue", False: "red"}[decision]
|
||||
colored_decision = color_text(str(decision), decision_color)
|
||||
logger.info(
|
||||
f"Decision: {colored_decision}\nQuestion: {prompt}\nExpected Answer: {answer}\nAgent Answer: {agent_response}\nExplanation: {explanation}\n"
|
||||
)
|
||||
result_to_print = f"""
|
||||
---------
|
||||
Decision: {colored_decision}
|
||||
Accuracy: {running_accuracy:.2%}
|
||||
Question: {prompt}
|
||||
Expected Answer: {answer}
|
||||
Agent Answer: {agent_response}
|
||||
Explanation: {explanation}
|
||||
Cost: ${running_cost.get():.5f} (Query: ${query_cost:.5f}, Eval: ${eval_cost:.5f})
|
||||
---------
|
||||
"""
|
||||
logger.info(dedent(result_to_print).lstrip())
|
||||
|
||||
time.sleep(SLEEP_SECONDS) # Rate limiting
|
||||
# Sleep between API calls to avoid rate limiting
|
||||
time.sleep(SLEEP_SECONDS)
|
||||
|
||||
|
||||
def color_text(text, color):
|
||||
|
@ -281,17 +341,18 @@ def main():
|
|||
lambda x: (x == True).mean()
|
||||
)
|
||||
|
||||
# Print summary
|
||||
# Collect summary
|
||||
colored_accuracy = color_text(f"{accuracy:.2%}", "blue")
|
||||
logger.info(f"\nOverall Accuracy: {colored_accuracy}")
|
||||
logger.info(f"\nAccuracy by Reasoning Type:\n{reasoning_type_accuracy}")
|
||||
|
||||
# Save summary to file
|
||||
colored_accuracy_str = f"Overall Accuracy: {colored_accuracy} on {args.dataset.title()} dataset."
|
||||
accuracy_str = f"Overall Accuracy: {accuracy:.2%} on {args.dataset}."
|
||||
accuracy_by_reasoning = f"Accuracy by Reasoning Type:\n{reasoning_type_accuracy}"
|
||||
cost = f"Total Cost: ${running_cost.get():.5f}."
|
||||
sample_type = f"Sampling Type: {SAMPLE_SIZE} samples." if SAMPLE_SIZE else "Whole dataset."
|
||||
sample_type += " Randomized." if RANDOMIZE else ""
|
||||
summary = (
|
||||
f"Overall Accuracy: {accuracy:.2%}\n\nAccuracy by Reasoning Type:\n{reasoning_type_accuracy}\n\n{sample_type}\n"
|
||||
)
|
||||
logger.info(f"\n{colored_accuracy_str}\n\n{accuracy_by_reasoning}\n\n{cost}\n\n{sample_type}\n")
|
||||
|
||||
# Save summary to file
|
||||
summary = f"{accuracy_str}\n\n{accuracy_by_reasoning}\n\n{cost}\n\n{sample_type}\n"
|
||||
summary_file = args.output.replace(".csv", ".txt") if args.output else None
|
||||
summary_file = (
|
||||
summary_file or f"{args.dataset}_evaluation_summary_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
||||
|
|
Loading…
Reference in a new issue