Merge branch 'master' into improve-agent-pane-on-home-screen

This commit is contained in:
Debanjum Singh Solanky 2024-10-22 20:05:29 -07:00
commit 750fbce0c2
51 changed files with 1472 additions and 399 deletions

View file

@ -1,7 +1,7 @@
{
"id": "khoj",
"name": "Khoj",
"version": "1.26.0",
"version": "1.26.4",
"minAppVersion": "0.15.0",
"description": "Your Second Brain",
"author": "Khoj Inc.",

View file

@ -62,7 +62,7 @@ dependencies = [
"requests >= 2.26.0",
"tenacity == 8.3.0",
"anyio == 3.7.1",
"pymupdf >= 1.23.5",
"pymupdf == 1.24.11",
"django == 5.0.9",
"authlib == 1.2.1",
"llama-cpp-python == 0.2.88",

View file

@ -326,7 +326,7 @@
entries.forEach(entry => {
// If the element is in the viewport, fetch the remaining message and unobserve the element
if (entry.isIntersecting) {
fetchRemainingChatMessages(chatHistoryUrl, headers);
fetchRemainingChatMessages(chatHistoryUrl, headers, chatBody.dataset.conversation_id, hostURL);
observer.unobserve(entry.target);
}
});
@ -342,7 +342,11 @@
new Date(chat_log.created),
chat_log.onlineContext,
chat_log.intent?.type,
chat_log.intent?.["inferred-queries"]);
chat_log.intent?.["inferred-queries"],
chatBody.dataset.conversationId ?? "",
hostURL,
);
chatBody.appendChild(messageElement);
// When the 4th oldest message is within viewing distance (~60% scrolled up)
@ -421,7 +425,7 @@
}
}
function fetchRemainingChatMessages(chatHistoryUrl, headers) {
function fetchRemainingChatMessages(chatHistoryUrl, headers, conversationId, hostURL) {
// Create a new IntersectionObserver
let observer = new IntersectionObserver((entries, observer) => {
entries.forEach(entry => {
@ -435,7 +439,9 @@
new Date(chat_log.created),
chat_log.onlineContext,
chat_log.intent?.type,
chat_log.intent?.["inferred-queries"]
chat_log.intent?.["inferred-queries"],
chatBody.dataset.conversationId ?? "",
hostURL,
);
entry.target.replaceWith(messageElement);

View file

@ -189,11 +189,19 @@ function processOnlineReferences(referenceSection, onlineContext) { //same
return numOnlineReferences;
}
function renderMessageWithReference(message, by, context=null, dt=null, onlineContext=null, intentType=null, inferredQueries=null) { //same
function renderMessageWithReference(message, by, context=null, dt=null, onlineContext=null, intentType=null, inferredQueries=null, conversationId=null, hostURL=null) {
let chatEl;
if (intentType?.includes("text-to-image")) {
let imageMarkdown = generateImageMarkdown(message, intentType, inferredQueries);
chatEl = renderMessage(imageMarkdown, by, dt, null, false, "return");
} else if (intentType === "excalidraw") {
let domain = hostURL ?? "https://app.khoj.dev/";
if (!domain.endsWith("/")) domain += "/";
let excalidrawMessage = `Hey, I'm not ready to show you diagrams yet here. But you can view it in the web app at ${domain}chat?conversationId=${conversationId}`;
chatEl = renderMessage(excalidrawMessage, by, dt, null, false, "return");
} else {
chatEl = renderMessage(message, by, dt, null, false, "return");
}
@ -312,7 +320,6 @@ function formatHTMLMessage(message, raw=false, willReplace=true) { //same
}
function createReferenceSection(references, createLinkerSection=false) {
console.log("linker data: ", createLinkerSection);
let referenceSection = document.createElement('div');
referenceSection.classList.add("reference-section");
referenceSection.classList.add("collapsed");
@ -417,7 +424,11 @@ function handleImageResponse(imageJson, rawResponse) {
rawResponse += `![generated_image](${imageJson.image})`;
} else if (imageJson.intentType === "text-to-image-v3") {
rawResponse = `![](data:image/webp;base64,${imageJson.image})`;
} else if (imageJson.intentType === "excalidraw") {
const redirectMessage = `Hey, I'm not ready to show you diagrams yet here. But you can view it in the web app`;
rawResponse += redirectMessage;
}
if (inferredQuery) {
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQuery}`;
}

View file

@ -1,6 +1,6 @@
{
"name": "Khoj",
"version": "1.26.0",
"version": "1.26.4",
"description": "Your Second Brain",
"author": "Khoj Inc. <team@khoj.dev>",
"license": "GPL-3.0-or-later",

View file

@ -6,7 +6,7 @@
;; Saba Imran <saba@khoj.dev>
;; Description: Your Second Brain
;; Keywords: search, chat, ai, org-mode, outlines, markdown, pdf, image
;; Version: 1.26.0
;; Version: 1.26.4
;; Package-Requires: ((emacs "27.1") (transient "0.3.0") (dash "2.19.1"))
;; URL: https://github.com/khoj-ai/khoj/tree/master/src/interface/emacs

View file

@ -1,7 +1,7 @@
{
"id": "khoj",
"name": "Khoj",
"version": "1.26.0",
"version": "1.26.4",
"minAppVersion": "0.15.0",
"description": "Your Second Brain",
"author": "Khoj Inc.",

View file

@ -1,6 +1,6 @@
{
"name": "Khoj",
"version": "1.26.0",
"version": "1.26.4",
"description": "Your Second Brain",
"author": "Debanjum Singh Solanky, Saba Imran <team@khoj.dev>",
"license": "GPL-3.0-or-later",

View file

@ -484,12 +484,13 @@ export class KhojChatView extends KhojPaneView {
dt?: Date,
intentType?: string,
inferredQueries?: string[],
conversationId?: string,
) {
if (!message) return;
let chatMessageEl;
if (intentType?.includes("text-to-image")) {
let imageMarkdown = this.generateImageMarkdown(message, intentType, inferredQueries);
if (intentType?.includes("text-to-image") || intentType === "excalidraw") {
let imageMarkdown = this.generateImageMarkdown(message, intentType, inferredQueries, conversationId);
chatMessageEl = this.renderMessage(chatEl, imageMarkdown, sender, dt);
} else {
chatMessageEl = this.renderMessage(chatEl, message, sender, dt);
@ -509,7 +510,7 @@ export class KhojChatView extends KhojPaneView {
chatMessageBodyEl.appendChild(this.createReferenceSection(references));
}
generateImageMarkdown(message: string, intentType: string, inferredQueries?: string[]) {
generateImageMarkdown(message: string, intentType: string, inferredQueries?: string[], conversationId?: string): string {
let imageMarkdown = "";
if (intentType === "text-to-image") {
imageMarkdown = `![](data:image/png;base64,${message})`;
@ -517,6 +518,10 @@ export class KhojChatView extends KhojPaneView {
imageMarkdown = `![](${message})`;
} else if (intentType === "text-to-image-v3") {
imageMarkdown = `![](data:image/webp;base64,${message})`;
} else if (intentType === "excalidraw") {
const domain = this.setting.khojUrl.endsWith("/") ? this.setting.khojUrl : `${this.setting.khojUrl}/`;
const redirectMessage = `Hey, I'm not ready to show you diagrams yet here. But you can view it in ${domain}chat?conversationId=${conversationId}`;
imageMarkdown = redirectMessage;
}
if (inferredQueries) {
imageMarkdown += "\n\n**Inferred Query**:";
@ -884,6 +889,7 @@ export class KhojChatView extends KhojPaneView {
new Date(chatLog.created),
chatLog.intent?.type,
chatLog.intent?.["inferred-queries"],
chatBodyEl.dataset.conversationId ?? "",
);
// push the user messages to the chat history
if(chatLog.by === "you"){
@ -1354,6 +1360,10 @@ export class KhojChatView extends KhojPaneView {
rawResponse += `![generated_image](${imageJson.image})`;
} else if (imageJson.intentType === "text-to-image-v3") {
rawResponse = `![](data:image/webp;base64,${imageJson.image})`;
} else if (imageJson.intentType === "excalidraw") {
const domain = this.setting.khojUrl.endsWith("/") ? this.setting.khojUrl : `${this.setting.khojUrl}/`;
const redirectMessage = `Hey, I'm not ready to show you diagrams yet here. But you can view it in ${domain}`;
rawResponse += redirectMessage;
}
if (inferredQuery) {
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQuery}`;

View file

@ -78,5 +78,9 @@
"1.24.0": "0.15.0",
"1.24.1": "0.15.0",
"1.25.0": "0.15.0",
"1.26.0": "0.15.0"
"1.26.0": "0.15.0",
"1.26.1": "0.15.0",
"1.26.2": "0.15.0",
"1.26.3": "0.15.0",
"1.26.4": "0.15.0"
}

View file

@ -79,7 +79,7 @@ div.titleBar {
div.chatBoxBody {
display: grid;
height: 100%;
width: 70%;
width: 95%;
margin: auto;
}

View file

@ -47,7 +47,14 @@ export default function RootLayout({
child-src 'none';
object-src 'none';"
></meta>
<body className={inter.className}>{children}</body>
<body className={inter.className}>
{children}
<script
dangerouslySetInnerHTML={{
__html: `window.EXCALIDRAW_ASSET_PATH = 'https://assets.khoj.dev/@excalidraw/excalidraw/dist/';`,
}}
/>
</body>
</html>
);
}

View file

@ -27,32 +27,37 @@ interface ChatBodyDataProps {
setUploadedFiles: (files: string[]) => void;
isMobileWidth?: boolean;
isLoggedIn: boolean;
setImage64: (image64: string) => void;
setImages: (images: string[]) => void;
}
function ChatBodyData(props: ChatBodyDataProps) {
const searchParams = useSearchParams();
const conversationId = searchParams.get("conversationId");
const [message, setMessage] = useState("");
const [image, setImage] = useState<string | null>(null);
const [images, setImages] = useState<string[]>([]);
const [processingMessage, setProcessingMessage] = useState(false);
const [agentMetadata, setAgentMetadata] = useState<AgentData | null>(null);
const setQueryToProcess = props.setQueryToProcess;
const onConversationIdChange = props.onConversationIdChange;
useEffect(() => {
if (image) {
props.setImage64(encodeURIComponent(image));
}
}, [image, props.setImage64]);
const chatHistoryCustomClassName = props.isMobileWidth ? "w-full" : "w-4/6";
useEffect(() => {
const storedImage = localStorage.getItem("image");
if (storedImage) {
setImage(storedImage);
props.setImage64(encodeURIComponent(storedImage));
localStorage.removeItem("image");
if (images.length > 0) {
const encodedImages = images.map((image) => encodeURIComponent(image));
props.setImages(encodedImages);
}
}, [images, props.setImages]);
useEffect(() => {
const storedImages = localStorage.getItem("images");
if (storedImages) {
const parsedImages: string[] = JSON.parse(storedImages);
setImages(parsedImages);
const encodedImages = parsedImages.map((img: string) => encodeURIComponent(img));
props.setImages(encodedImages);
localStorage.removeItem("images");
}
const storedMessage = localStorage.getItem("message");
@ -60,7 +65,7 @@ function ChatBodyData(props: ChatBodyDataProps) {
setProcessingMessage(true);
setQueryToProcess(storedMessage);
}
}, [setQueryToProcess]);
}, [setQueryToProcess, props.setImages]);
useEffect(() => {
if (message) {
@ -82,6 +87,7 @@ function ChatBodyData(props: ChatBodyDataProps) {
props.streamedMessages[props.streamedMessages.length - 1].completed
) {
setProcessingMessage(false);
setImages([]); // Reset images after processing
} else {
setMessage("");
}
@ -101,16 +107,17 @@ function ChatBodyData(props: ChatBodyDataProps) {
setAgent={setAgentMetadata}
pendingMessage={processingMessage ? message : ""}
incomingMessages={props.streamedMessages}
customClassName={chatHistoryCustomClassName}
/>
</div>
<div
className={`${styles.inputBox} p-1 md:px-2 shadow-md bg-background align-middle items-center justify-center dark:bg-neutral-700 dark:border-0 dark:shadow-sm rounded-t-2xl rounded-b-none md:rounded-xl h-fit`}
className={`${styles.inputBox} p-1 md:px-2 shadow-md bg-background align-middle items-center justify-center dark:bg-neutral-700 dark:border-0 dark:shadow-sm rounded-t-2xl rounded-b-none md:rounded-xl h-fit ${chatHistoryCustomClassName} mr-auto ml-auto`}
>
<ChatInputArea
agentColor={agentMetadata?.color}
isLoggedIn={props.isLoggedIn}
sendMessage={(message) => setMessage(message)}
sendImage={(image) => setImage(image)}
sendImage={(image) => setImages((prevImages) => [...prevImages, image])}
sendDisabled={processingMessage}
chatOptionsData={props.chatOptionsData}
conversationId={conversationId}
@ -132,7 +139,7 @@ export default function Chat() {
const [queryToProcess, setQueryToProcess] = useState<string>("");
const [processQuerySignal, setProcessQuerySignal] = useState(false);
const [uploadedFiles, setUploadedFiles] = useState<string[]>([]);
const [image64, setImage64] = useState<string>("");
const [images, setImages] = useState<string[]>([]);
const locationData = useIPLocationData() || {
timezone: Intl.DateTimeFormat().resolvedOptions().timeZone,
@ -168,7 +175,7 @@ export default function Chat() {
completed: false,
timestamp: new Date().toISOString(),
rawQuery: queryToProcess || "",
uploadedImageData: decodeURIComponent(image64),
images: images,
};
setMessages((prevMessages) => [...prevMessages, newStreamMessage]);
setProcessQuerySignal(true);
@ -199,7 +206,7 @@ export default function Chat() {
if (done) {
setQueryToProcess("");
setProcessQuerySignal(false);
setImage64("");
setImages([]);
break;
}
@ -247,7 +254,7 @@ export default function Chat() {
country_code: locationData.countryCode,
timezone: locationData.timezone,
}),
...(image64 && { image: image64 }),
...(images.length > 0 && { images: images }),
};
const response = await fetch(chatAPI, {
@ -261,7 +268,8 @@ export default function Chat() {
try {
await readChatStream(response);
} catch (err) {
console.error(err);
const apiError = await response.json();
console.error(apiError);
// Retrieve latest message being processed
const currentMessage = messages.find((message) => !message.completed);
if (!currentMessage) return;
@ -270,7 +278,11 @@ export default function Chat() {
const errorMessage = (err as Error).message;
if (errorMessage.includes("Error in input stream"))
currentMessage.rawResponse = `Woops! The connection broke while I was writing my thoughts down. Maybe try again in a bit or dislike this message if the issue persists?`;
else
else if (response.status === 429) {
"detail" in apiError
? (currentMessage.rawResponse = `${apiError.detail}`)
: (currentMessage.rawResponse = `I'm a bit overwhelmed at the moment. Could you try again in a bit or dislike this message if the issue persists?`);
} else
currentMessage.rawResponse = `Umm, not sure what just happened. I see this error message: ${errorMessage}. Could you try again or dislike this message if the issue persists?`;
// Complete message streaming teardown properly
@ -329,7 +341,7 @@ export default function Chat() {
setUploadedFiles={setUploadedFiles}
isMobileWidth={isMobileWidth}
onConversationIdChange={handleConversationIdChange}
setImage64={setImage64}
setImages={setImages}
/>
</Suspense>
</div>

View file

@ -5,10 +5,10 @@ export interface RawReferenceData {
onlineContext?: OnlineContext;
}
export interface ResponseWithReferences {
context?: Context[];
online?: OnlineContext;
response?: string;
export interface ResponseWithIntent {
intentType: string;
response: string;
inferredQueries?: string[];
}
interface MessageChunk {
@ -49,10 +49,14 @@ export function convertMessageChunkToJson(chunk: string): MessageChunk {
function handleJsonResponse(chunkData: any) {
const jsonData = chunkData as any;
if (jsonData.image || jsonData.detail) {
let responseWithReference = handleImageResponse(chunkData, true);
if (responseWithReference.response) return responseWithReference.response;
let responseWithIntent = handleImageResponse(chunkData, true);
return responseWithIntent;
} else if (jsonData.response) {
return jsonData.response;
return {
response: jsonData.response,
intentType: "",
inferredQueries: [],
};
} else {
throw new Error("Invalid JSON response");
}
@ -80,8 +84,18 @@ export function processMessageChunk(
return { context, onlineContext };
} else if (chunk.type === "message") {
const chunkData = chunk.data;
// Here, handle if the response is a JSON response with an image, but the intentType is excalidraw
if (chunkData !== null && typeof chunkData === "object") {
currentMessage.rawResponse += handleJsonResponse(chunkData);
let responseWithIntent = handleJsonResponse(chunkData);
if (responseWithIntent.intentType && responseWithIntent.intentType === "excalidraw") {
currentMessage.rawResponse = responseWithIntent.response;
} else {
currentMessage.rawResponse += responseWithIntent.response;
}
currentMessage.intentType = responseWithIntent.intentType;
currentMessage.inferredQueries = responseWithIntent.inferredQueries;
} else if (
typeof chunkData === "string" &&
chunkData.trim()?.startsWith("{") &&
@ -89,7 +103,10 @@ export function processMessageChunk(
) {
try {
const jsonData = JSON.parse(chunkData.trim());
currentMessage.rawResponse += handleJsonResponse(jsonData);
let responseWithIntent = handleJsonResponse(jsonData);
currentMessage.rawResponse += responseWithIntent.response;
currentMessage.intentType = responseWithIntent.intentType;
currentMessage.inferredQueries = responseWithIntent.inferredQueries;
} catch (e) {
currentMessage.rawResponse += JSON.stringify(chunkData);
}
@ -111,42 +128,26 @@ export function processMessageChunk(
return { context, onlineContext };
}
export function handleImageResponse(imageJson: any, liveStream: boolean): ResponseWithReferences {
export function handleImageResponse(imageJson: any, liveStream: boolean): ResponseWithIntent {
let rawResponse = "";
if (imageJson.image) {
const inferredQuery = imageJson.inferredQueries?.[0] ?? "generated image";
// If response has image field, response is a generated image.
if (imageJson.intentType === "text-to-image") {
rawResponse += `![generated_image](data:image/png;base64,${imageJson.image})`;
} else if (imageJson.intentType === "text-to-image2") {
rawResponse += `![generated_image](${imageJson.image})`;
} else if (imageJson.intentType === "text-to-image-v3") {
rawResponse = `![](data:image/webp;base64,${imageJson.image})`;
}
if (inferredQuery && !liveStream) {
rawResponse += `\n\n${inferredQuery}`;
}
// If response has image field, response may be a generated image
rawResponse = imageJson.image;
}
let reference: ResponseWithReferences = {};
let responseWithIntent: ResponseWithIntent = {
intentType: imageJson.intentType,
response: rawResponse,
inferredQueries: imageJson.inferredQueries,
};
if (imageJson.context && imageJson.context.length > 0) {
const rawReferenceAsJson = imageJson.context;
if (rawReferenceAsJson instanceof Array) {
reference.context = rawReferenceAsJson;
} else if (typeof rawReferenceAsJson === "object" && rawReferenceAsJson !== null) {
reference.online = rawReferenceAsJson;
}
}
if (imageJson.detail) {
// The detail field contains the improved image prompt
rawResponse += imageJson.detail;
}
reference.response = rawResponse;
return reference;
return responseWithIntent;
}
export function modifyFileFilterForConversation(

View file

@ -48,6 +48,7 @@ import {
Oven,
Gavel,
Broadcast,
KeyReturn,
} from "@phosphor-icons/react";
import { Markdown, OrgMode, Pdf, Word } from "@/app/components/logo/fileLogo";
@ -193,6 +194,10 @@ export function getIconForSlashCommand(command: string, customClassName: string
}
if (command.includes("default")) {
return <KeyReturn className={className} />;
}
if (command.includes("diagram")) {
return <Shapes className={className} />;
}

View file

@ -2,12 +2,7 @@ div.chatHistory {
display: flex;
flex-direction: column;
height: 100%;
}
div.chatLayout {
height: 80vh;
overflow-y: auto;
margin: 0 auto;
margin: auto;
}
div.agentIndicator a {

View file

@ -37,6 +37,7 @@ interface ChatHistoryProps {
pendingMessage?: string;
publicConversationSlug?: string;
setAgent: (agent: AgentData) => void;
customClassName?: string;
}
function constructTrainOfThought(
@ -255,7 +256,7 @@ export default function ChatHistory(props: ChatHistoryProps) {
return (
<ScrollArea className={`h-[80vh] relative`} ref={scrollAreaRef}>
<div>
<div className={styles.chatHistory}>
<div className={`${styles.chatHistory} ${props.customClassName}`}>
<div ref={sentinelRef} style={{ height: "1px" }}>
{fetchingData && (
<InlineLoading message="Loading Conversation" className="opacity-50" />
@ -298,7 +299,7 @@ export default function ChatHistory(props: ChatHistoryProps) {
created: message.timestamp,
by: "you",
automationId: "",
uploadedImageData: message.uploadedImageData,
images: message.images,
}}
customClassName="fullHistory"
borderLeftColor={`${data?.agent?.color}-500`}
@ -322,6 +323,12 @@ export default function ChatHistory(props: ChatHistoryProps) {
by: "khoj",
automationId: "",
rawQuery: message.rawQuery,
intent: {
type: message.intentType || "",
query: message.rawQuery,
"memory-type": "",
"inferred-queries": message.inferredQueries || [],
},
}}
customClassName="fullHistory"
borderLeftColor={`${data?.agent?.color}-500`}
@ -341,7 +348,6 @@ export default function ChatHistory(props: ChatHistoryProps) {
created: new Date().getTime().toString(),
by: "you",
automationId: "",
uploadedImageData: props.pendingMessage,
}}
customClassName="fullHistory"
borderLeftColor={`${data?.agent?.color}-500`}
@ -366,18 +372,20 @@ export default function ChatHistory(props: ChatHistoryProps) {
</div>
)}
</div>
{!isNearBottom && (
<button
title="Scroll to bottom"
className="absolute bottom-4 right-5 bg-white dark:bg-[hsl(var(--background))] text-neutral-500 dark:text-white p-2 rounded-full shadow-xl"
onClick={() => {
scrollToBottom();
setIsNearBottom(true);
}}
>
<ArrowDown size={24} />
</button>
)}
<div className={`${props.customClassName} fixed bottom-[15%] z-10`}>
{!isNearBottom && (
<button
title="Scroll to bottom"
className="absolute bottom-0 right-0 bg-white dark:bg-[hsl(var(--background))] text-neutral-500 dark:text-white p-2 rounded-full shadow-xl"
onClick={() => {
scrollToBottom();
setIsNearBottom(true);
}}
>
<ArrowDown size={24} />
</button>
)}
</div>
</div>
</ScrollArea>
);

View file

@ -62,10 +62,11 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
const [loginRedirectMessage, setLoginRedirectMessage] = useState<string | null>(null);
const [showLoginPrompt, setShowLoginPrompt] = useState(false);
const [recording, setRecording] = useState(false);
const [imageUploaded, setImageUploaded] = useState(false);
const [imagePath, setImagePath] = useState<string>("");
const [imageData, setImageData] = useState<string | null>(null);
const [imagePaths, setImagePaths] = useState<string[]>([]);
const [imageData, setImageData] = useState<string[]>([]);
const [recording, setRecording] = useState(false);
const [mediaRecorder, setMediaRecorder] = useState<MediaRecorder | null>(null);
const [progressValue, setProgressValue] = useState(0);
@ -90,27 +91,31 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
useEffect(() => {
async function fetchImageData() {
if (imagePath) {
const response = await fetch(imagePath);
const blob = await response.blob();
const reader = new FileReader();
reader.onload = function () {
const base64data = reader.result;
setImageData(base64data as string);
};
reader.readAsDataURL(blob);
if (imagePaths.length > 0) {
const newImageData = await Promise.all(
imagePaths.map(async (path) => {
const response = await fetch(path);
const blob = await response.blob();
return new Promise<string>((resolve) => {
const reader = new FileReader();
reader.onload = () => resolve(reader.result as string);
reader.readAsDataURL(blob);
});
}),
);
setImageData(newImageData);
}
setUploading(false);
}
setUploading(true);
fetchImageData();
}, [imagePath]);
}, [imagePaths]);
function onSendMessage() {
if (imageUploaded) {
setImageUploaded(false);
setImagePath("");
props.sendImage(imageData || "");
setImagePaths([]);
imageData.forEach((data) => props.sendImage(data));
}
if (!message.trim()) return;
@ -156,18 +161,23 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
setShowLoginPrompt(true);
return;
}
// check for image file
// check for image files
const image_endings = ["jpg", "jpeg", "png", "webp"];
const newImagePaths: string[] = [];
for (let i = 0; i < files.length; i++) {
const file = files[i];
const file_extension = file.name.split(".").pop();
if (image_endings.includes(file_extension || "")) {
setImageUploaded(true);
setImagePath(DOMPurify.sanitize(URL.createObjectURL(file)));
return;
newImagePaths.push(DOMPurify.sanitize(URL.createObjectURL(file)));
}
}
if (newImagePaths.length > 0) {
setImageUploaded(true);
setImagePaths((prevPaths) => [...prevPaths, ...newImagePaths]);
return;
}
uploadDataForIndexing(
files,
setWarning,
@ -272,9 +282,12 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
setIsDragAndDropping(false);
}
function removeImageUpload() {
setImageUploaded(false);
setImagePath("");
function removeImageUpload(index: number) {
setImagePaths((prevPaths) => prevPaths.filter((_, i) => i !== index));
setImageData((prevData) => prevData.filter((_, i) => i !== index));
if (imagePaths.length === 1) {
setImageUploaded(false);
}
}
return (
@ -391,24 +404,11 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
</div>
)}
<div
className={`${styles.actualInputArea} items-center justify-between dark:bg-neutral-700 relative ${isDragAndDropping && "animate-pulse"}`}
className={`${styles.actualInputArea} justify-between dark:bg-neutral-700 relative ${isDragAndDropping && "animate-pulse"}`}
onDragOver={handleDragOver}
onDragLeave={handleDragLeave}
onDrop={handleDragAndDropFiles}
>
{imageUploaded && (
<div className="absolute bottom-[80px] left-0 right-0 dark:bg-neutral-700 bg-white pt-5 pb-5 w-full rounded-lg border dark:border-none grid grid-cols-2">
<div className="pl-4 pr-4">
<img src={imagePath} alt="img" className="w-auto max-h-[100px]" />
</div>
<div className="pl-4 pr-4">
<X
className="w-6 h-6 float-right dark:hover:bg-[hsl(var(--background))] hover:bg-neutral-100 rounded-sm"
onClick={removeImageUpload}
/>
</div>
</div>
)}
<input
type="file"
multiple={true}
@ -416,15 +416,37 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
onChange={handleFileChange}
style={{ display: "none" }}
/>
<Button
variant={"ghost"}
className="!bg-none p-0 m-2 h-auto text-3xl rounded-full text-gray-300 hover:text-gray-500"
disabled={props.sendDisabled}
onClick={handleFileButtonClick}
>
<Paperclip className="w-8 h-8" />
</Button>
<div className="grid w-full gap-1.5 relative">
<div className="flex items-end pb-4">
<Button
variant={"ghost"}
className="!bg-none p-0 m-2 h-auto text-3xl rounded-full text-gray-300 hover:text-gray-500"
disabled={props.sendDisabled}
onClick={handleFileButtonClick}
>
<Paperclip className="w-8 h-8" />
</Button>
</div>
<div className="flex-grow flex flex-col w-full gap-1.5 relative pb-2">
<div className="flex items-center gap-2 overflow-x-auto">
{imageUploaded &&
imagePaths.map((path, index) => (
<div key={index} className="relative flex-shrink-0 pb-3 pt-2 group">
<img
src={path}
alt={`img-${index}`}
className="w-auto h-16 object-cover rounded-xl"
/>
<Button
variant="ghost"
size="icon"
className="absolute -top-0 -right-2 h-5 w-5 rounded-full bg-neutral-200 dark:bg-neutral-600 hover:bg-neutral-300 dark:hover:bg-neutral-500 opacity-0 group-hover:opacity-100 transition-opacity"
onClick={() => removeImageUpload(index)}
>
<X className="h-3 w-3" />
</Button>
</div>
))}
</div>
<Textarea
ref={chatInputRef}
className={`border-none w-full h-16 min-h-16 max-h-[128px] md:py-4 rounded-lg resize-none dark:bg-neutral-700 ${props.isMobileWidth ? "text-md" : "text-lg"}`}
@ -435,7 +457,7 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
onKeyDown={(e) => {
if (e.key === "Enter" && !e.shiftKey) {
setImageUploaded(false);
setImagePath("");
setImagePaths([]);
e.preventDefault();
onSendMessage();
}
@ -444,57 +466,59 @@ export const ChatInputArea = forwardRef<HTMLTextAreaElement, ChatInputProps>((pr
disabled={props.sendDisabled || recording}
/>
</div>
{recording ? (
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="default"
className={`${!recording && "hidden"} ${props.agentColor ? convertToBGClass(props.agentColor) : "bg-orange-300 hover:bg-orange-500"} rounded-full p-1 m-2 h-auto text-3xl transition transform md:hover:-translate-y-1`}
onClick={() => {
setRecording(!recording);
}}
disabled={props.sendDisabled}
>
<Stop weight="fill" className="w-6 h-6" />
</Button>
</TooltipTrigger>
<TooltipContent>
Click to stop recording and transcribe your voice.
</TooltipContent>
</Tooltip>
</TooltipProvider>
) : mediaRecorder ? (
<InlineLoading />
) : (
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="default"
className={`${!message || recording || "hidden"} ${props.agentColor ? convertToBGClass(props.agentColor) : "bg-orange-300 hover:bg-orange-500"} rounded-full p-1 m-2 h-auto text-3xl transition transform md:hover:-translate-y-1`}
onClick={() => {
setMessage("Listening...");
setRecording(!recording);
}}
disabled={props.sendDisabled}
>
<Microphone weight="fill" className="w-6 h-6" />
</Button>
</TooltipTrigger>
<TooltipContent>
Click to transcribe your message with voice.
</TooltipContent>
</Tooltip>
</TooltipProvider>
)}
<Button
className={`${(!message || recording) && "hidden"} ${props.agentColor ? convertToBGClass(props.agentColor) : "bg-orange-300 hover:bg-orange-500"} rounded-full p-1 m-2 h-auto text-3xl transition transform md:hover:-translate-y-1`}
onClick={onSendMessage}
disabled={props.sendDisabled}
>
<ArrowUp className="w-6 h-6" weight="bold" />
</Button>
<div className="flex items-end pb-4">
{recording ? (
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="default"
className={`${!recording && "hidden"} ${props.agentColor ? convertToBGClass(props.agentColor) : "bg-orange-300 hover:bg-orange-500"} rounded-full p-1 m-2 h-auto text-3xl transition transform md:hover:-translate-y-1`}
onClick={() => {
setRecording(!recording);
}}
disabled={props.sendDisabled}
>
<Stop weight="fill" className="w-6 h-6" />
</Button>
</TooltipTrigger>
<TooltipContent>
Click to stop recording and transcribe your voice.
</TooltipContent>
</Tooltip>
</TooltipProvider>
) : mediaRecorder ? (
<InlineLoading />
) : (
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="default"
className={`${!message || recording || "hidden"} ${props.agentColor ? convertToBGClass(props.agentColor) : "bg-orange-300 hover:bg-orange-500"} rounded-full p-1 m-2 h-auto text-3xl transition transform md:hover:-translate-y-1`}
onClick={() => {
setMessage("Listening...");
setRecording(!recording);
}}
disabled={props.sendDisabled}
>
<Microphone weight="fill" className="w-6 h-6" />
</Button>
</TooltipTrigger>
<TooltipContent>
Click to transcribe your message with voice.
</TooltipContent>
</Tooltip>
</TooltipProvider>
)}
<Button
className={`${(!message || recording) && "hidden"} ${props.agentColor ? convertToBGClass(props.agentColor) : "bg-orange-300 hover:bg-orange-500"} rounded-full p-1 m-2 h-auto text-3xl transition transform md:hover:-translate-y-1`}
onClick={onSendMessage}
disabled={props.sendDisabled}
>
<ArrowUp className="w-6 h-6" weight="bold" />
</Button>
</div>
</div>
</>
);

View file

@ -57,7 +57,26 @@ div.emptyChatMessage {
display: none;
}
div.chatMessageContainer img {
div.imagesContainer {
display: flex;
overflow-x: auto;
padding-bottom: 8px;
margin-bottom: 8px;
}
div.imageWrapper {
flex: 0 0 auto;
margin-right: 8px;
}
div.imageWrapper img {
width: auto;
height: 128px;
object-fit: cover;
border-radius: 8px;
}
div.chatMessageContainer > img {
width: auto;
height: auto;
max-width: 100%;

View file

@ -26,6 +26,7 @@ import {
Palette,
ClipboardText,
Check,
Shapes,
} from "@phosphor-icons/react";
import DOMPurify from "dompurify";
@ -35,6 +36,7 @@ import { AgentData } from "@/app/agents/page";
import renderMathInElement from "katex/contrib/auto-render";
import "katex/dist/katex.min.css";
import ExcalidrawComponent from "../excalidraw/excalidraw";
const md = new markdownIt({
html: true,
@ -114,7 +116,7 @@ export interface SingleChatMessage {
rawQuery?: string;
intent?: Intent;
agent?: AgentData;
uploadedImageData?: string;
images?: string[];
}
export interface StreamMessage {
@ -126,7 +128,9 @@ export interface StreamMessage {
rawQuery: string;
timestamp: string;
agent?: AgentData;
uploadedImageData?: string;
images?: string[];
intentType?: string;
inferredQueries?: string[];
}
export interface ChatHistoryData {
@ -208,7 +212,6 @@ interface ChatMessageProps {
borderLeftColor?: string;
isLastMessage?: boolean;
agent?: AgentData;
uploadedImageData?: string;
}
interface TrainOfThoughtProps {
@ -252,6 +255,10 @@ function chooseIconFromHeader(header: string, iconColor: string) {
return <Aperture className={`${classNames}`} />;
}
if (compareHeader.includes("diagram")) {
return <Shapes className={`${classNames}`} />;
}
if (compareHeader.includes("paint")) {
return <Palette className={`${classNames}`} />;
}
@ -283,6 +290,7 @@ const ChatMessage = forwardRef<HTMLDivElement, ChatMessageProps>((props, ref) =>
const [markdownRendered, setMarkdownRendered] = useState<string>("");
const [isPlaying, setIsPlaying] = useState<boolean>(false);
const [interrupted, setInterrupted] = useState<boolean>(false);
const [excalidrawData, setExcalidrawData] = useState<string>("");
const interruptedRef = useRef<boolean>(false);
const messageRef = useRef<HTMLDivElement>(null);
@ -321,6 +329,11 @@ const ChatMessage = forwardRef<HTMLDivElement, ChatMessageProps>((props, ref) =>
useEffect(() => {
let message = props.chatMessage.message;
if (props.chatMessage.intent && props.chatMessage.intent.type == "excalidraw") {
message = props.chatMessage.intent["inferred-queries"][0];
setExcalidrawData(props.chatMessage.message);
}
// Replace LaTeX delimiters with placeholders
message = message
.replace(/\\\(/g, "LEFTPAREN")
@ -328,26 +341,40 @@ const ChatMessage = forwardRef<HTMLDivElement, ChatMessageProps>((props, ref) =>
.replace(/\\\[/g, "LEFTBRACKET")
.replace(/\\\]/g, "RIGHTBRACKET");
if (props.chatMessage.uploadedImageData) {
message = `![uploaded image](${props.chatMessage.uploadedImageData})\n\n${message}`;
if (props.chatMessage.images && props.chatMessage.images.length > 0) {
const imagesInMd = props.chatMessage.images
.map((image, index) => {
const decodedImage = image.startsWith("data%3Aimage")
? decodeURIComponent(image)
: image;
const sanitizedImage = DOMPurify.sanitize(decodedImage);
return `<div class="${styles.imageWrapper}"><img src="${sanitizedImage}" alt="uploaded image ${index + 1}" /></div>`;
})
.join("");
message = `<div class="${styles.imagesContainer}">${imagesInMd}</div>${message}`;
}
if (props.chatMessage.intent && props.chatMessage.intent.type == "text-to-image") {
message = `![generated image](data:image/png;base64,${message})`;
} else if (props.chatMessage.intent && props.chatMessage.intent.type == "text-to-image2") {
message = `![generated image](${message})`;
} else if (
props.chatMessage.intent &&
props.chatMessage.intent.type == "text-to-image-v3"
) {
message = `![generated image](data:image/webp;base64,${message})`;
}
if (
props.chatMessage.intent &&
props.chatMessage.intent.type.includes("text-to-image") &&
props.chatMessage.intent["inferred-queries"]?.length > 0
) {
message += `\n\n${props.chatMessage.intent["inferred-queries"][0]}`;
const intentTypeHandlers = {
"text-to-image": (msg: string) => `![generated image](data:image/png;base64,${msg})`,
"text-to-image2": (msg: string) => `![generated image](${msg})`,
"text-to-image-v3": (msg: string) =>
`![generated image](data:image/webp;base64,${msg})`,
excalidraw: (msg: string) => {
return msg;
},
};
if (props.chatMessage.intent) {
const { type, "inferred-queries": inferredQueries } = props.chatMessage.intent;
console.log("intent type", type);
if (type in intentTypeHandlers) {
message = intentTypeHandlers[type as keyof typeof intentTypeHandlers](message);
}
if (type.includes("text-to-image") && inferredQueries?.length > 0) {
message += `\n\n${inferredQueries[0]}`;
}
}
setTextRendered(message);
@ -364,7 +391,7 @@ const ChatMessage = forwardRef<HTMLDivElement, ChatMessageProps>((props, ref) =>
// Sanitize and set the rendered markdown
setMarkdownRendered(DOMPurify.sanitize(markdownRendered));
}, [props.chatMessage.message, props.chatMessage.intent]);
}, [props.chatMessage.message, props.chatMessage.images, props.chatMessage.intent]);
useEffect(() => {
if (copySuccess) {
@ -554,6 +581,7 @@ const ChatMessage = forwardRef<HTMLDivElement, ChatMessageProps>((props, ref) =>
className={styles.chatMessage}
dangerouslySetInnerHTML={{ __html: markdownRendered }}
/>
{excalidrawData && <ExcalidrawComponent data={excalidrawData} />}
</div>
<div className={styles.teaserReferencesContainer}>
<TeaserReferencesSection

View file

@ -0,0 +1,24 @@
"use client";
import dynamic from "next/dynamic";
import { Suspense } from "react";
import Loading from "../../components/loading/loading";
// Since client components get prerenderd on server as well hence importing
// the excalidraw stuff dynamically with ssr false
const ExcalidrawWrapper = dynamic(() => import("./excalidrawWrapper").then((mod) => mod.default), {
ssr: false,
});
interface ExcalidrawComponentProps {
data: any;
}
export default function ExcalidrawComponent(props: ExcalidrawComponentProps) {
return (
<Suspense fallback={<Loading />}>
<ExcalidrawWrapper data={props.data} />
</Suspense>
);
}

View file

@ -0,0 +1,149 @@
"use client";
import { useState, useEffect } from "react";
import dynamic from "next/dynamic";
import { ExcalidrawProps } from "@excalidraw/excalidraw/types/types";
import { ExcalidrawElement } from "@excalidraw/excalidraw/types/element/types";
import { ExcalidrawElementSkeleton } from "@excalidraw/excalidraw/types/data/transform";
const Excalidraw = dynamic<ExcalidrawProps>(
async () => (await import("@excalidraw/excalidraw")).Excalidraw,
{
ssr: false,
},
);
import { convertToExcalidrawElements } from "@excalidraw/excalidraw";
import { Button } from "@/components/ui/button";
import { ArrowsInSimple, ArrowsOutSimple } from "@phosphor-icons/react";
interface ExcalidrawWrapperProps {
data: ExcalidrawElementSkeleton[];
}
export default function ExcalidrawWrapper(props: ExcalidrawWrapperProps) {
const [excalidrawElements, setExcalidrawElements] = useState<ExcalidrawElement[]>([]);
const [expanded, setExpanded] = useState<boolean>(false);
const isValidExcalidrawElement = (element: ExcalidrawElementSkeleton): boolean => {
return (
element.x !== undefined &&
element.y !== undefined &&
element.id !== undefined &&
element.type !== undefined
);
};
useEffect(() => {
if (expanded) {
onkeydown = (e) => {
if (e.key === "Escape") {
setExpanded(false);
// Trigger a resize event to make Excalidraw adjust its size
window.dispatchEvent(new Event("resize"));
}
};
} else {
onkeydown = null;
}
}, [expanded]);
useEffect(() => {
// Do some basic validation
const basicValidSkeletons: ExcalidrawElementSkeleton[] = [];
for (const element of props.data) {
if (isValidExcalidrawElement(element as ExcalidrawElementSkeleton)) {
basicValidSkeletons.push(element as ExcalidrawElementSkeleton);
}
}
const validSkeletons: ExcalidrawElementSkeleton[] = [];
for (const element of basicValidSkeletons) {
if (element.type === "frame") {
continue;
}
if (element.type === "arrow") {
const start = basicValidSkeletons.find((child) => child.id === element.start?.id);
const end = basicValidSkeletons.find((child) => child.id === element.end?.id);
if (start && end) {
validSkeletons.push(element);
}
} else {
validSkeletons.push(element);
}
}
for (const element of basicValidSkeletons) {
if (element.type === "frame") {
const children = element.children?.map((childId) => {
return validSkeletons.find((child) => child.id === childId);
});
// Get the valid children, filter out any undefined values
const validChildrenIds: readonly string[] = children
?.map((child) => child?.id)
.filter((id) => id !== undefined) as string[];
if (validChildrenIds === undefined || validChildrenIds.length === 0) {
continue;
}
validSkeletons.push({
...element,
children: validChildrenIds,
});
}
}
const elements = convertToExcalidrawElements(validSkeletons);
setExcalidrawElements(elements);
}, []);
return (
<div className="relative">
<div
className={`${expanded ? "fixed inset-0 bg-black bg-opacity-50 backdrop-blur-sm z-50 flex items-center justify-center" : ""}`}
>
<Button
onClick={() => {
setExpanded(!expanded);
// Trigger a resize event to make Excalidraw adjust its size
window.dispatchEvent(new Event("resize"));
}}
variant={"outline"}
className={`${expanded ? "absolute top-2 left-2 z-[60]" : ""}`}
>
{expanded ? (
<ArrowsInSimple className="h-4 w-4" />
) : (
<ArrowsOutSimple className="h-4 w-4" />
)}
</Button>
<div
className={`
${expanded ? "w-[80vw] h-[80vh]" : "w-full h-[500px]"}
bg-white overflow-hidden rounded-lg relative
`}
>
<Excalidraw
initialData={{
elements: excalidrawElements,
appState: { zenModeEnabled: true },
scrollToContent: true,
}}
// TODO - Create a common function to detect if the theme is dark?
theme={localStorage.getItem("theme") === "dark" ? "dark" : "light"}
validateEmbeddable={true}
renderTopRightUI={(isMobile, appState) => {
return <></>;
}}
/>
</div>
</div>
</div>
);
}

View file

@ -51,7 +51,7 @@ function FisherYatesShuffle(array: any[]) {
function ChatBodyData(props: ChatBodyDataProps) {
const [message, setMessage] = useState("");
const [image, setImage] = useState<string | null>(null);
const [images, setImages] = useState<string[]>([]);
const [processingMessage, setProcessingMessage] = useState(false);
const [greeting, setGreeting] = useState("");
const [shuffledOptions, setShuffledOptions] = useState<Suggestion[]>([]);
@ -151,20 +151,21 @@ function ChatBodyData(props: ChatBodyDataProps) {
try {
const newConversationId = await createNewConversation(selectedAgent || "khoj");
onConversationIdChange?.(newConversationId);
window.location.href = `/chat?conversationId=${newConversationId}`;
localStorage.setItem("message", message);
if (image) {
localStorage.setItem("image", image);
if (images.length > 0) {
localStorage.setItem("images", JSON.stringify(images));
}
window.location.href = `/chat?conversationId=${newConversationId}`;
} catch (error) {
console.error("Error creating new conversation:", error);
setProcessingMessage(false);
}
setMessage("");
setImages([]);
}
};
processMessage();
if (message) {
if (message || images.length > 0) {
setProcessingMessage(true);
}
}, [selectedAgent, message, processingMessage, onConversationIdChange]);
@ -290,7 +291,7 @@ function ChatBodyData(props: ChatBodyDataProps) {
</ScrollArea>
)}
</div>
<div className={`mx-auto ${props.isMobileWidth ? "w-full" : "w-fit"}`}>
<div className={`mx-auto ${props.isMobileWidth ? "w-full" : "w-fit max-w-screen-md"}`}>
{!props.isMobileWidth && (
<div
className={`w-full ${styles.inputBox} shadow-lg bg-background align-middle items-center justify-center px-3 py-1 dark:bg-neutral-700 border-stone-100 dark:border-none dark:shadow-none rounded-2xl`}
@ -298,7 +299,7 @@ function ChatBodyData(props: ChatBodyDataProps) {
<ChatInputArea
isLoggedIn={props.isLoggedIn}
sendMessage={(message) => setMessage(message)}
sendImage={(image) => setImage(image)}
sendImage={(image) => setImages((prevImages) => [...prevImages, image])}
sendDisabled={processingMessage}
chatOptionsData={props.chatOptionsData}
conversationId={null}
@ -379,7 +380,7 @@ function ChatBodyData(props: ChatBodyDataProps) {
<ChatInputArea
isLoggedIn={props.isLoggedIn}
sendMessage={(message) => setMessage(message)}
sendImage={(image) => setImage(image)}
sendImage={(image) => setImages((prevImages) => [...prevImages, image])}
sendDisabled={processingMessage}
chatOptionsData={props.chatOptionsData}
conversationId={null}

View file

@ -27,7 +27,14 @@ export default function RootLayout({
child-src 'none';
object-src 'none';"
></meta>
<body className={inter.className}>{children}</body>
<body className={inter.className}>
{children}
<script
dangerouslySetInnerHTML={{
__html: `window.EXCALIDRAW_ASSET_PATH = 'https://assets.khoj.dev/@excalidraw/excalidraw/dist/';`,
}}
/>
</body>
</html>
);
}

View file

@ -28,22 +28,42 @@ interface ChatBodyDataProps {
isLoggedIn: boolean;
conversationId?: string;
setQueryToProcess: (query: string) => void;
setImage64: (image64: string) => void;
setImages: (images: string[]) => void;
}
function ChatBodyData(props: ChatBodyDataProps) {
const [message, setMessage] = useState("");
const [image, setImage] = useState<string | null>(null);
const [images, setImages] = useState<string[]>([]);
const [processingMessage, setProcessingMessage] = useState(false);
const [agentMetadata, setAgentMetadata] = useState<AgentData | null>(null);
const setQueryToProcess = props.setQueryToProcess;
const streamedMessages = props.streamedMessages;
const chatHistoryCustomClassName = props.isMobileWidth ? "w-full" : "w-4/6";
useEffect(() => {
if (image) {
props.setImage64(encodeURIComponent(image));
if (images.length > 0) {
const encodedImages = images.map((image) => encodeURIComponent(image));
props.setImages(encodedImages);
}
}, [image, props.setImage64]);
}, [images, props.setImages]);
useEffect(() => {
const storedImages = localStorage.getItem("images");
if (storedImages) {
const parsedImages: string[] = JSON.parse(storedImages);
setImages(parsedImages);
const encodedImages = parsedImages.map((img: string) => encodeURIComponent(img));
props.setImages(encodedImages);
localStorage.removeItem("images");
}
const storedMessage = localStorage.getItem("message");
if (storedMessage) {
setProcessingMessage(true);
setQueryToProcess(storedMessage);
}
}, [setQueryToProcess, props.setImages]);
useEffect(() => {
if (message) {
@ -78,15 +98,16 @@ function ChatBodyData(props: ChatBodyDataProps) {
setTitle={props.setTitle}
pendingMessage={processingMessage ? message : ""}
incomingMessages={props.streamedMessages}
customClassName={chatHistoryCustomClassName}
/>
</div>
<div
className={`${styles.inputBox} p-1 md:px-2 shadow-md bg-background align-middle items-center justify-center dark:bg-neutral-700 dark:border-0 dark:shadow-sm rounded-t-2xl rounded-b-none md:rounded-xl`}
className={`${styles.inputBox} p-1 md:px-2 shadow-md bg-background align-middle items-center justify-center dark:bg-neutral-700 dark:border-0 dark:shadow-sm rounded-t-2xl rounded-b-none md:rounded-xl h-fit ${chatHistoryCustomClassName} mr-auto ml-auto`}
>
<ChatInputArea
isLoggedIn={props.isLoggedIn}
sendMessage={(message) => setMessage(message)}
sendImage={(image) => setImage(image)}
sendImage={(image) => setImages((prevImages) => [...prevImages, image])}
sendDisabled={processingMessage}
chatOptionsData={props.chatOptionsData}
conversationId={props.conversationId}
@ -109,7 +130,7 @@ export default function SharedChat() {
const [processQuerySignal, setProcessQuerySignal] = useState(false);
const [uploadedFiles, setUploadedFiles] = useState<string[]>([]);
const [paramSlug, setParamSlug] = useState<string | undefined>(undefined);
const [image64, setImage64] = useState<string>("");
const [images, setImages] = useState<string[]>([]);
const locationData = useIPLocationData() || {
timezone: Intl.DateTimeFormat().resolvedOptions().timeZone,
@ -167,7 +188,7 @@ export default function SharedChat() {
completed: false,
timestamp: new Date().toISOString(),
rawQuery: queryToProcess || "",
uploadedImageData: decodeURIComponent(image64),
images: images,
};
setMessages((prevMessages) => [...prevMessages, newStreamMessage]);
setProcessQuerySignal(true);
@ -194,7 +215,7 @@ export default function SharedChat() {
if (done) {
setQueryToProcess("");
setProcessQuerySignal(false);
setImage64("");
setImages([]);
break;
}
@ -236,7 +257,7 @@ export default function SharedChat() {
country_code: locationData.countryCode,
timezone: locationData.timezone,
}),
...(image64 && { image: image64 }),
...(images.length > 0 && { image: images }),
};
const response = await fetch(chatAPI, {
@ -275,6 +296,19 @@ export default function SharedChat() {
<div className={styles.chatBox}>
<div className={styles.chatBoxBody}>
{!isMobileWidth && title && (
<div
className={`${styles.chatTitleWrapper} text-nowrap text-ellipsis overflow-hidden max-w-screen-md grid items-top font-bold mr-8 pt-6 col-auto h-fit`}
>
{title && (
<h2
className={`text-lg text-ellipsis whitespace-nowrap overflow-x-hidden`}
>
{title}
</h2>
)}
</div>
)}
<Suspense fallback={<Loading />}>
<ChatBodyData
conversationId={conversationId}
@ -286,7 +320,7 @@ export default function SharedChat() {
setTitle={setTitle}
setUploadedFiles={setUploadedFiles}
isMobileWidth={isMobileWidth}
setImage64={setImage64}
setImages={setImages}
/>
</Suspense>
</div>

View file

@ -75,7 +75,7 @@ div.titleBar {
div.chatBoxBody {
display: grid;
height: 100%;
width: 70%;
width: 95%;
margin: auto;
}

View file

@ -1,6 +1,6 @@
{
"name": "khoj-ai",
"version": "1.26.0",
"version": "1.26.4",
"private": true,
"scripts": {
"dev": "next dev",
@ -63,7 +63,8 @@
"swr": "^2.2.5",
"typescript": "^5",
"vaul": "^0.9.1",
"zod": "^3.23.8"
"zod": "^3.23.8",
"@excalidraw/excalidraw": "^0.17.6"
},
"devDependencies": {
"@types/dompurify": "^3.0.5",

View file

@ -286,6 +286,11 @@
resolved "https://registry.yarnpkg.com/@eslint/js/-/js-8.57.1.tgz#de633db3ec2ef6a3c89e2f19038063e8a122e2c2"
integrity sha512-d9zaMRSTIKDLhctzH12MtXvJKSSUhaHcjV+2Z+GK+EEY7XKpP5yR4x+N3TAcHTcu963nIr+TMcCb4DBCYX1z6Q==
"@excalidraw/excalidraw@^0.17.6":
version "0.17.6"
resolved "https://registry.yarnpkg.com/@excalidraw/excalidraw/-/excalidraw-0.17.6.tgz#5fd208ce69d33ca712d1804b50d7d06d5c46ac4d"
integrity sha512-fyCl+zG/Z5yhHDh5Fq2ZGmphcrALmuOdtITm8gN4d8w4ntnaopTXcTfnAAaU3VleDC6LhTkoLOTG6P5kgREiIg==
"@floating-ui/core@^1.6.0":
version "1.6.8"
resolved "https://registry.yarnpkg.com/@floating-ui/core/-/core-1.6.8.tgz#aa43561be075815879305965020f492cdb43da12"

View file

@ -172,7 +172,7 @@ class UserAuthenticationBackend(AuthenticationBackend):
request=request,
telemetry_type="api",
api="create_user",
metadata={"user_id": str(user.uuid)},
metadata={"server_id": str(user.uuid)},
)
logger.log(logging.INFO, f"🥳 New User Created: {user.uuid}")
else:

View file

@ -622,6 +622,8 @@ class AgentAdapters:
@staticmethod
def get_all_accessible_agents(user: KhojUser = None):
public_query = Q(privacy_level=Agent.PrivacyLevel.PUBLIC)
# TODO Update this to allow any public agent that's officially approved once that experience is launched
public_query &= Q(managed_by_admin=True)
if user:
return (
Agent.objects.filter(public_query | Q(creator=user))
@ -640,6 +642,16 @@ class AgentAdapters:
agents = await sync_to_async(AgentAdapters.get_all_accessible_agents)(user)
return await sync_to_async(list)(agents)
@staticmethod
async def ais_agent_accessible(agent: Agent, user: KhojUser) -> bool:
if agent.privacy_level == Agent.PrivacyLevel.PUBLIC:
return True
if agent.creator == user:
return True
if agent.privacy_level == Agent.PrivacyLevel.PROTECTED:
return True
return False
@staticmethod
def get_conversation_agent_by_id(agent_id: int):
agent = Agent.objects.filter(id=agent_id).first()
@ -1463,12 +1475,15 @@ class EntryAdapters:
file_filters = EntryAdapters.file_filter.get_filter_terms(query)
date_filters = EntryAdapters.date_filter.get_query_date_range(query)
user_or_agent = Q(user=user)
owner_filter = Q()
if user != None:
owner_filter = Q(user=user)
if agent != None:
user_or_agent |= Q(agent=agent)
owner_filter |= Q(agent=agent)
if len(word_filters) == 0 and len(file_filters) == 0 and len(date_filters) == 0:
return Entry.objects.filter(user_or_agent)
return Entry.objects.filter(owner_filter)
for term in word_filters:
if term.startswith("+"):
@ -1504,7 +1519,7 @@ class EntryAdapters:
formatted_max_date = date.fromtimestamp(max_date).strftime("%Y-%m-%d")
q_filter_terms &= Q(embeddings_dates__date__lte=formatted_max_date)
relevant_entries = Entry.objects.filter(user_or_agent).filter(q_filter_terms)
relevant_entries = Entry.objects.filter(owner_filter).filter(q_filter_terms)
if file_type_filter:
relevant_entries = relevant_entries.filter(file_type=file_type_filter)
return relevant_entries
@ -1519,13 +1534,18 @@ class EntryAdapters:
max_distance: float = math.inf,
agent: Agent = None,
):
user_or_agent = Q(user=user)
owner_filter = Q()
if user != None:
owner_filter = Q(user=user)
if agent != None:
user_or_agent |= Q(agent=agent)
owner_filter |= Q(agent=agent)
if owner_filter == Q():
return Entry.objects.none()
relevant_entries = EntryAdapters.apply_filters(user, raw_query, file_type_filter, agent)
relevant_entries = relevant_entries.filter(user_or_agent).annotate(
relevant_entries = relevant_entries.filter(owner_filter).annotate(
distance=CosineDistance("embeddings", embeddings)
)
relevant_entries = relevant_entries.filter(distance__lte=max_distance)

View file

@ -0,0 +1,46 @@
# Generated by Django 5.0.8 on 2024-10-21 05:16
import django.contrib.postgres.fields
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
("database", "0069_webscraper_serverchatsettings_web_scraper"),
]
operations = [
migrations.AlterField(
model_name="agent",
name="input_tools",
field=django.contrib.postgres.fields.ArrayField(
base_field=models.CharField(
choices=[
("general", "General"),
("online", "Online"),
("notes", "Notes"),
("summarize", "Summarize"),
("webpage", "Webpage"),
],
max_length=200,
),
blank=True,
default=list,
null=True,
size=None,
),
),
migrations.AlterField(
model_name="agent",
name="output_modes",
field=django.contrib.postgres.fields.ArrayField(
base_field=models.CharField(
choices=[("text", "Text"), ("image", "Image"), ("automation", "Automation")], max_length=200
),
blank=True,
default=list,
null=True,
size=None,
),
),
]

View file

@ -180,8 +180,12 @@ class Agent(BaseModel):
) # Creator will only be null when the agents are managed by admin
name = models.CharField(max_length=200)
personality = models.TextField()
input_tools = ArrayField(models.CharField(max_length=200, choices=InputToolOptions.choices), default=list)
output_modes = ArrayField(models.CharField(max_length=200, choices=OutputModeOptions.choices), default=list)
input_tools = ArrayField(
models.CharField(max_length=200, choices=InputToolOptions.choices), default=list, null=True, blank=True
)
output_modes = ArrayField(
models.CharField(max_length=200, choices=OutputModeOptions.choices), default=list, null=True, blank=True
)
managed_by_admin = models.BooleanField(default=False)
chat_model = models.ForeignKey(ChatModelOptions, on_delete=models.CASCADE)
slug = models.CharField(max_length=200, unique=True)

View file

@ -67,7 +67,7 @@ class PdfToEntries(TextToEntries):
bytes = pdf_files[pdf_file]
f.write(bytes)
try:
loader = PyMuPDFLoader(f"{tmp_file}", extract_images=True)
loader = PyMuPDFLoader(f"{tmp_file}", extract_images=False)
pdf_entries_per_file = [page.page_content for page in loader.load()]
except ImportError:
loader = PyMuPDFLoader(f"{tmp_file}")

View file

@ -6,14 +6,17 @@ from typing import Dict, Optional
from langchain.schema import ChatMessage
from khoj.database.models import Agent, KhojUser
from khoj.database.models import Agent, ChatModelOptions, KhojUser
from khoj.processor.conversation import prompts
from khoj.processor.conversation.google.utils import (
format_messages_for_gemini,
gemini_chat_completion_with_backoff,
gemini_completion_with_backoff,
)
from khoj.processor.conversation.utils import generate_chatml_messages_with_context
from khoj.processor.conversation.utils import (
construct_structured_message,
generate_chatml_messages_with_context,
)
from khoj.utils.helpers import ConversationCommand, is_none_or_empty
from khoj.utils.rawconfig import LocationData
@ -29,6 +32,8 @@ def extract_questions_gemini(
max_tokens=None,
location_data: LocationData = None,
user: KhojUser = None,
query_images: Optional[list[str]] = None,
vision_enabled: bool = False,
personality_context: Optional[str] = None,
):
"""
@ -70,17 +75,17 @@ def extract_questions_gemini(
text=text,
)
messages = [ChatMessage(content=prompt, role="user")]
prompt = construct_structured_message(
message=prompt,
images=query_images,
model_type=ChatModelOptions.ModelType.GOOGLE,
vision_enabled=vision_enabled,
)
model_kwargs = {"response_mime_type": "application/json"}
messages = [ChatMessage(content=prompt, role="user"), ChatMessage(content=system_prompt, role="system")]
response = gemini_completion_with_backoff(
messages=messages,
system_prompt=system_prompt,
model_name=model,
temperature=temperature,
api_key=api_key,
model_kwargs=model_kwargs,
response = gemini_send_message_to_model(
messages, api_key, model, response_type="json_object", temperature=temperature
)
# Extract, Clean Message from Gemini's Response
@ -102,7 +107,7 @@ def extract_questions_gemini(
return questions
def gemini_send_message_to_model(messages, api_key, model, response_type="text"):
def gemini_send_message_to_model(messages, api_key, model, response_type="text", temperature=0, model_kwargs=None):
"""
Send message to model
"""
@ -114,7 +119,12 @@ def gemini_send_message_to_model(messages, api_key, model, response_type="text")
# Get Response from Gemini
return gemini_completion_with_backoff(
messages=messages, system_prompt=system_prompt, model_name=model, api_key=api_key, model_kwargs=model_kwargs
messages=messages,
system_prompt=system_prompt,
model_name=model,
api_key=api_key,
temperature=temperature,
model_kwargs=model_kwargs,
)
@ -133,6 +143,8 @@ def converse_gemini(
location_data: LocationData = None,
user_name: str = None,
agent: Agent = None,
query_images: Optional[list[str]] = None,
vision_available: bool = False,
):
"""
Converse with user using Google's Gemini
@ -187,6 +199,9 @@ def converse_gemini(
model_name=model,
max_prompt_size=max_prompt_size,
tokenizer_name=tokenizer_name,
query_images=query_images,
vision_enabled=vision_available,
model_type=ChatModelOptions.ModelType.GOOGLE,
)
messages, system_prompt = format_messages_for_gemini(messages, system_prompt)

View file

@ -1,8 +1,11 @@
import logging
import random
from io import BytesIO
from threading import Thread
import google.generativeai as genai
import PIL.Image
import requests
from google.generativeai.types.answer_types import FinishReason
from google.generativeai.types.generation_types import StopCandidateException
from google.generativeai.types.safety_types import (
@ -53,14 +56,14 @@ def gemini_completion_with_backoff(
},
)
formatted_messages = [{"role": message.role, "parts": [message.content]} for message in messages]
formatted_messages = [{"role": message.role, "parts": message.content} for message in messages]
# Start chat session. All messages up to the last are considered to be part of the chat history
chat_session = model.start_chat(history=formatted_messages[0:-1])
try:
# Generate the response. The last message is considered to be the current prompt
aggregated_response = chat_session.send_message(formatted_messages[-1]["parts"][0])
aggregated_response = chat_session.send_message(formatted_messages[-1]["parts"])
return aggregated_response.text
except StopCandidateException as e:
response_message, _ = handle_gemini_response(e.args)
@ -117,11 +120,11 @@ def gemini_llm_thread(g, messages, system_prompt, model_name, temperature, api_k
},
)
formatted_messages = [{"role": message.role, "parts": [message.content]} for message in messages]
formatted_messages = [{"role": message.role, "parts": message.content} for message in messages]
# all messages up to the last are considered to be part of the chat history
chat_session = model.start_chat(history=formatted_messages[0:-1])
# the last message is considered to be the current prompt
for chunk in chat_session.send_message(formatted_messages[-1]["parts"][0], stream=True):
for chunk in chat_session.send_message(formatted_messages[-1]["parts"], stream=True):
message, stopped = handle_gemini_response(chunk.candidates, chunk.prompt_feedback)
message = message or chunk.text
g.send(message)
@ -191,14 +194,6 @@ def generate_safety_response(safety_ratings):
def format_messages_for_gemini(messages: list[ChatMessage], system_prompt: str = None) -> tuple[list[str], str]:
if len(messages) == 1:
messages[0].role = "user"
return messages, system_prompt
for message in messages:
if message.role == "assistant":
message.role = "model"
# Extract system message
system_prompt = system_prompt or ""
for message in messages.copy():
@ -207,4 +202,31 @@ def format_messages_for_gemini(messages: list[ChatMessage], system_prompt: str =
messages.remove(message)
system_prompt = None if is_none_or_empty(system_prompt) else system_prompt
for message in messages:
# Convert message content to string list from chatml dictionary list
if isinstance(message.content, list):
# Convert image_urls to PIL.Image and place them at beginning of list (better for Gemini)
message.content = [
get_image_from_url(item["image_url"]["url"]) if item["type"] == "image_url" else item["text"]
for item in sorted(message.content, key=lambda x: 0 if x["type"] == "image_url" else 1)
]
elif isinstance(message.content, str):
message.content = [message.content]
if message.role == "assistant":
message.role = "model"
if len(messages) == 1:
messages[0].role = "user"
return messages, system_prompt
def get_image_from_url(image_url: str) -> PIL.Image:
try:
response = requests.get(image_url)
response.raise_for_status() # Check if the request was successful
return PIL.Image.open(BytesIO(response.content))
except requests.exceptions.RequestException as e:
logger.error(f"Failed to get image from URL {image_url}: {e}")
return None

View file

@ -30,7 +30,7 @@ def extract_questions(
api_base_url=None,
location_data: LocationData = None,
user: KhojUser = None,
uploaded_image_url: Optional[str] = None,
query_images: Optional[list[str]] = None,
vision_enabled: bool = False,
personality_context: Optional[str] = None,
):
@ -74,7 +74,7 @@ def extract_questions(
prompt = construct_structured_message(
message=prompt,
image_url=uploaded_image_url,
images=query_images,
model_type=ChatModelOptions.ModelType.OPENAI,
vision_enabled=vision_enabled,
)
@ -135,7 +135,7 @@ def converse(
location_data: LocationData = None,
user_name: str = None,
agent: Agent = None,
image_url: Optional[str] = None,
query_images: Optional[list[str]] = None,
vision_available: bool = False,
):
"""
@ -191,7 +191,7 @@ def converse(
model_name=model,
max_prompt_size=max_prompt_size,
tokenizer_name=tokenizer_name,
uploaded_image_url=image_url,
query_images=query_images,
vision_enabled=vision_available,
model_type=ChatModelOptions.ModelType.OPENAI,
)

View file

@ -176,6 +176,150 @@ Improved Prompt:
""".strip()
)
## Diagram Generation
## --
improve_diagram_description_prompt = PromptTemplate.from_template(
"""
you are an architect working with a novice artist using a diagramming tool.
{personality_context}
you need to convert the user's query to a description format that the novice artist can use very well. you are allowed to use primitives like
- text
- rectangle
- diamond
- ellipse
- line
- arrow
- frame
use these primitives to describe what sort of diagram the drawer should create. the artist must recreate the diagram every time, so include all relevant prior information in your description.
use simple, concise language.
Today's Date: {current_date}
User's Location: {location}
User's Notes:
{references}
Online References:
{online_results}
Conversation Log:
{chat_history}
Query: {query}
""".strip()
)
excalidraw_diagram_generation_prompt = PromptTemplate.from_template(
"""
You are a program manager with the ability to describe diagrams to compose in professional, fine detail.
{personality_context}
You need to create a declarative description of the diagram and relevant components, using this base schema. Use the `label` property to specify the text to be rendered in the respective elements. Always use light colors for the `backgroundColor` property, like white, or light blue, green, red. "type", "x", "y", "id", are required properties for all elements.
{{
type: string,
x: number,
y: number,
strokeColor: string,
backgroundColor: string,
width: number,
height: number,
id: string,
label: {{
text: string,
}}
}}
Valid types:
- text
- rectangle
- diamond
- ellipse
- line
- arrow
For arrows and lines, you can use the `points` property to specify the start and end points of the arrow. You may also use the `label` property to specify the text to be rendered. You may use the `start` and `end` properties to connect the linear elements to other elements. The start and end point can either be the ID to map to an existing object, or the `type` to create a new object. Mapping to an existing object is useful if you want to connect it to multiple objects. Lines and arrows can only start and end at rectangle, text, diamond, or ellipse elements.
{{
type: "arrow",
id: string,
x: number,
y: number,
width: number,
height: number,
strokeColor: string,
start: {{
id: string,
type: string,
}},
end: {{
id: string,
type: string,
}},
label: {{
text: string,
}}
points: [
[number, number],
[number, number],
]
}}
For text, you must use the `text` property to specify the text to be rendered. You may also use `fontSize` property to specify the font size of the text. Only use the `text` element for titles, subtitles, and overviews. For labels, use the `label` property in the respective elements.
{{
type: "text",
id: string,
x: number,
y: number,
fontSize: number,
text: string,
}}
For frames, use the `children` property to specify the elements that are inside the frame by their ids.
{{
type: "frame",
id: string,
x: number,
y: number,
width: number,
height: number,
name: string,
children: [
string
]
}}
Here's an example of a valid diagram:
Design Description: Create a diagram describing a circular development process with 3 stages: design, implementation and feedback. The design stage is connected to the implementation stage and the implementation stage is connected to the feedback stage and the feedback stage is connected to the design stage. Each stage should be labeled with the stage name.
Response:
[
{{"type":"text","x":-150,"y":50,"width":300,"height":40,"id":"title_text","text":"Circular Development Process","fontSize":24}},
{{"type":"ellipse","x":-169,"y":113,"width":188,"height":202,"id":"design_ellipse", "label": {{"text": "Design"}}}},
{{"type":"ellipse","x":62,"y":394,"width":186,"height":188,"id":"implement_ellipse", "label": {{"text": "Implement"}}}},
{{"type":"ellipse","x":-348,"y":430,"width":184,"height":170,"id":"feedback_ellipse", "label": {{"text": "Feedback"}}}},
{{"type":"arrow","x":21,"y":273,"id":"design_to_implement_arrow","points":[[0,0],[86,105]],"start":{{"id":"design_ellipse"}}, "end":{{"id":"implement_ellipse"}}}},
{{"type":"arrow","x":50,"y":519,"id":"implement_to_feedback_arrow","points":[[0,0],[-198,-6]],"start":{{"id":"implement_ellipse"}}, "end":{{"id":"feedback_ellipse"}}}},
{{"type":"arrow","x":-228,"y":417,"id":"feedback_to_design_arrow","points":[[0,0],[85,-123]],"start":{{"id":"feedback_ellipse"}}, "end":{{"id":"design_ellipse"}}}},
]
Create a detailed diagram from the provided context and user prompt below. Return a valid JSON object:
Diagram Description: {query}
""".strip()
)
## Online Search Conversation
## --
online_search_conversation = PromptTemplate.from_template(

View file

@ -109,7 +109,7 @@ def save_to_conversation_log(
client_application: ClientApplication = None,
conversation_id: str = None,
automation_id: str = None,
uploaded_image_url: str = None,
query_images: List[str] = None,
):
user_message_time = user_message_time or datetime.now().strftime("%Y-%m-%d %H:%M:%S")
updated_conversation = message_to_log(
@ -117,7 +117,7 @@ def save_to_conversation_log(
chat_response=chat_response,
user_message_metadata={
"created": user_message_time,
"uploadedImageData": uploaded_image_url,
"images": query_images,
},
khoj_message_metadata={
"context": compiled_references,
@ -145,10 +145,18 @@ Khoj: "{inferred_queries if ("text-to-image" in intent_type) else chat_response}
)
# Format user and system messages to chatml format
def construct_structured_message(message, image_url, model_type, vision_enabled):
if image_url and vision_enabled and model_type == ChatModelOptions.ModelType.OPENAI:
return [{"type": "text", "text": message}, {"type": "image_url", "image_url": {"url": image_url}}]
def construct_structured_message(message: str, images: list[str], model_type: str, vision_enabled: bool):
"""
Format messages into appropriate multimedia format for supported chat model types
"""
if not images or not vision_enabled:
return message
if model_type in [ChatModelOptions.ModelType.OPENAI, ChatModelOptions.ModelType.GOOGLE]:
return [
{"type": "text", "text": message},
*[{"type": "image_url", "image_url": {"url": image}} for image in images],
]
return message
@ -160,7 +168,7 @@ def generate_chatml_messages_with_context(
loaded_model: Optional[Llama] = None,
max_prompt_size=None,
tokenizer_name=None,
uploaded_image_url=None,
query_images=None,
vision_enabled=False,
model_type="",
):
@ -181,11 +189,12 @@ def generate_chatml_messages_with_context(
message_notes = f'\n\n Notes:\n{chat.get("context")}' if chat.get("context") else "\n"
role = "user" if chat["by"] == "you" else "assistant"
message_content = chat["message"] + message_notes
if chat["by"] == "khoj" and "excalidraw" in chat["intent"].get("type"):
message_content = chat.get("intent").get("inferred-queries")[0] + message_notes
else:
message_content = chat["message"] + message_notes
message_content = construct_structured_message(
message_content, chat.get("uploadedImageData"), model_type, vision_enabled
)
message_content = construct_structured_message(message_content, chat.get("images"), model_type, vision_enabled)
reconstructed_message = ChatMessage(content=message_content, role=role)
@ -198,7 +207,7 @@ def generate_chatml_messages_with_context(
if not is_none_or_empty(user_message):
messages.append(
ChatMessage(
content=construct_structured_message(user_message, uploaded_image_url, model_type, vision_enabled),
content=construct_structured_message(user_message, query_images, model_type, vision_enabled),
role="user",
)
)
@ -222,7 +231,6 @@ def truncate_messages(
tokenizer_name=None,
) -> list[ChatMessage]:
"""Truncate messages to fit within max prompt size supported by model"""
default_tokenizer = "gpt-4o"
try:
@ -252,6 +260,7 @@ def truncate_messages(
system_message = messages.pop(idx)
break
# TODO: Handle truncation of multi-part message.content, i.e when message.content is a list[dict] rather than a string
system_message_tokens = (
len(encoder.encode(system_message.content)) if system_message and type(system_message.content) == str else 0
)

View file

@ -26,7 +26,7 @@ async def text_to_image(
references: List[Dict[str, Any]],
online_results: Dict[str, Any],
send_status_func: Optional[Callable] = None,
uploaded_image_url: Optional[str] = None,
query_images: Optional[List[str]] = None,
agent: Agent = None,
):
status_code = 200
@ -65,7 +65,7 @@ async def text_to_image(
note_references=references,
online_results=online_results,
model_type=text_to_image_config.model_type,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
user=user,
agent=agent,
)
@ -87,18 +87,18 @@ async def text_to_image(
if "content_policy_violation" in e.message:
logger.error(f"Image Generation blocked by OpenAI: {e}")
status_code = e.status_code # type: ignore
message = f"Image generation blocked by OpenAI: {e.message}" # type: ignore
message = f"Image generation blocked by OpenAI due to policy violation" # type: ignore
yield image_url or image, status_code, message, intent_type.value
return
else:
logger.error(f"Image Generation failed with {e}", exc_info=True)
message = f"Image generation failed with OpenAI error: {e.message}" # type: ignore
message = f"Image generation failed using OpenAI" # type: ignore
status_code = e.status_code # type: ignore
yield image_url or image, status_code, message, intent_type.value
return
except requests.RequestException as e:
logger.error(f"Image Generation failed with {e}", exc_info=True)
message = f"Image generation using {text2image_model} via {text_to_image_config.model_type} failed with error: {e}"
message = f"Image generation using {text2image_model} via {text_to_image_config.model_type} failed due to a network error."
status_code = 502
yield image_url or image, status_code, message, intent_type.value
return

View file

@ -62,7 +62,7 @@ async def search_online(
user: KhojUser,
send_status_func: Optional[Callable] = None,
custom_filters: List[str] = [],
uploaded_image_url: str = None,
query_images: List[str] = None,
agent: Agent = None,
):
query += " ".join(custom_filters)
@ -73,7 +73,7 @@ async def search_online(
# Breakdown the query into subqueries to get the correct answer
subqueries = await generate_online_subqueries(
query, conversation_history, location, user, uploaded_image_url=uploaded_image_url, agent=agent
query, conversation_history, location, user, query_images=query_images, agent=agent
)
response_dict = {}
@ -151,7 +151,7 @@ async def read_webpages(
location: LocationData,
user: KhojUser,
send_status_func: Optional[Callable] = None,
uploaded_image_url: str = None,
query_images: List[str] = None,
agent: Agent = None,
):
"Infer web pages to read from the query and extract relevant information from them"
@ -159,7 +159,7 @@ async def read_webpages(
if send_status_func:
async for event in send_status_func(f"**Inferring web pages to read**"):
yield {ChatEvent.STATUS: event}
urls = await infer_webpage_urls(query, conversation_history, location, user, uploaded_image_url)
urls = await infer_webpage_urls(query, conversation_history, location, user, query_images)
logger.info(f"Reading web pages at: {urls}")
if send_status_func:

View file

@ -21,6 +21,7 @@ from starlette.authentication import has_required_scope, requires
from khoj.configure import initialize_content
from khoj.database import adapters
from khoj.database.adapters import (
AgentAdapters,
AutomationAdapters,
ConversationAdapters,
EntryAdapters,
@ -114,10 +115,16 @@ async def execute_search(
dedupe: Optional[bool] = True,
agent: Optional[Agent] = None,
):
start_time = time.time()
# Run validation checks
results: List[SearchResponse] = []
start_time = time.time()
# Ensure the agent, if present, is accessible by the user
if user and agent and not await AgentAdapters.ais_agent_accessible(agent, user):
logger.error(f"Agent {agent.slug} is not accessible by user {user}")
return results
if q is None or q == "":
logger.warning(f"No query param (q) passed in API call to initiate search")
return results
@ -340,7 +347,7 @@ async def extract_references_and_questions(
conversation_commands: List[ConversationCommand] = [ConversationCommand.Default],
location_data: LocationData = None,
send_status_func: Optional[Callable] = None,
uploaded_image_url: Optional[str] = None,
query_images: Optional[List[str]] = None,
agent: Agent = None,
):
user = request.user.object if request.user.is_authenticated else None
@ -431,7 +438,7 @@ async def extract_references_and_questions(
conversation_log=meta_log,
location_data=location_data,
user=user,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
vision_enabled=vision_enabled,
personality_context=personality_context,
)
@ -452,12 +459,14 @@ async def extract_references_and_questions(
chat_model = conversation_config.chat_model
inferred_queries = extract_questions_gemini(
defiltered_query,
query_images=query_images,
model=chat_model,
api_key=api_key,
conversation_log=meta_log,
location_data=location_data,
max_tokens=conversation_config.max_prompt_size,
user=user,
vision_enabled=vision_enabled,
personality_context=personality_context,
)

View file

@ -30,8 +30,10 @@ from khoj.processor.speech.text_to_speech import generate_text_to_speech
from khoj.processor.tools.online_search import read_webpages, search_online
from khoj.routers.api import extract_references_and_questions
from khoj.routers.helpers import (
ApiImageRateLimiter,
ApiUserRateLimiter,
ChatEvent,
ChatRequestBody,
CommonQueryParams,
ConversationCommandRateLimiter,
agenerate_chat_response,
@ -40,6 +42,7 @@ from khoj.routers.helpers import (
construct_automation_created_message,
create_automation,
extract_relevant_summary,
generate_excalidraw_diagram,
get_conversation_command,
is_query_empty,
is_ready_to_chat,
@ -523,22 +526,6 @@ async def set_conversation_title(
)
class ChatRequestBody(BaseModel):
q: str
n: Optional[int] = 7
d: Optional[float] = None
stream: Optional[bool] = False
title: Optional[str] = None
conversation_id: Optional[str] = None
city: Optional[str] = None
region: Optional[str] = None
country: Optional[str] = None
country_code: Optional[str] = None
timezone: Optional[str] = None
image: Optional[str] = None
create_new: Optional[bool] = False
@api_chat.post("")
@requires(["authenticated"])
async def chat(
@ -551,6 +538,7 @@ async def chat(
rate_limiter_per_day=Depends(
ApiUserRateLimiter(requests=600, subscribed_requests=6000, window=60 * 60 * 24, slug="chat_day")
),
image_rate_limiter=Depends(ApiImageRateLimiter(max_images=10, max_combined_size_mb=20)),
):
# Access the parameters from the body
q = body.q
@ -564,9 +552,9 @@ async def chat(
country = body.country or get_country_name_from_timezone(body.timezone)
country_code = body.country_code or get_country_code_from_timezone(body.timezone)
timezone = body.timezone
image = body.image
raw_images = body.images
async def event_generator(q: str, image: str):
async def event_generator(q: str, images: list[str]):
start_time = time.perf_counter()
ttft = None
chat_metadata: dict = {}
@ -576,16 +564,16 @@ async def chat(
q = unquote(q)
nonlocal conversation_id
uploaded_image_url = None
if image:
decoded_string = unquote(image)
base64_data = decoded_string.split(",", 1)[1]
image_bytes = base64.b64decode(base64_data)
webp_image_bytes = convert_image_to_webp(image_bytes)
try:
uploaded_image_url = upload_image_to_bucket(webp_image_bytes, request.user.object.id)
except:
uploaded_image_url = None
uploaded_images: list[str] = []
if images:
for image in images:
decoded_string = unquote(image)
base64_data = decoded_string.split(",", 1)[1]
image_bytes = base64.b64decode(base64_data)
webp_image_bytes = convert_image_to_webp(image_bytes)
uploaded_image = upload_image_to_bucket(webp_image_bytes, request.user.object.id)
if uploaded_image:
uploaded_images.append(uploaded_image)
async def send_event(event_type: ChatEvent, data: str | dict):
nonlocal connection_alive, ttft
@ -692,7 +680,7 @@ async def chat(
meta_log,
is_automated_task,
user=user,
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
agent=agent,
)
conversation_commands_str = ", ".join([cmd.value for cmd in conversation_commands])
@ -701,7 +689,7 @@ async def chat(
):
yield result
mode = await aget_relevant_output_modes(q, meta_log, is_automated_task, user, uploaded_image_url, agent)
mode = await aget_relevant_output_modes(q, meta_log, is_automated_task, user, uploaded_images, agent)
async for result in send_event(ChatEvent.STATUS, f"**Decided Response Mode:** {mode.value}"):
yield result
if mode not in conversation_commands:
@ -764,7 +752,7 @@ async def chat(
q,
contextual_data,
conversation_history=meta_log,
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
user=user,
agent=agent,
)
@ -785,7 +773,7 @@ async def chat(
intent_type="summarize",
client_application=request.user.client_app,
conversation_id=conversation_id,
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
)
return
@ -828,7 +816,7 @@ async def chat(
conversation_id=conversation_id,
inferred_queries=[query_to_run],
automation_id=automation.id,
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
)
async for result in send_llm_response(llm_response):
yield result
@ -848,7 +836,7 @@ async def chat(
conversation_commands,
location,
partial(send_event, ChatEvent.STATUS),
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
agent=agent,
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
@ -859,7 +847,7 @@ async def chat(
defiltered_query = result[2]
except Exception as e:
error_message = f"Error searching knowledge base: {e}. Attempting to respond without document references."
logger.warning(error_message)
logger.error(error_message, exc_info=True)
async for result in send_event(
ChatEvent.STATUS, "Document search failed. I'll try respond without document references"
):
@ -892,7 +880,7 @@ async def chat(
user,
partial(send_event, ChatEvent.STATUS),
custom_filters,
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
agent=agent,
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
@ -916,7 +904,7 @@ async def chat(
location,
user,
partial(send_event, ChatEvent.STATUS),
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
agent=agent,
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
@ -966,20 +954,20 @@ async def chat(
references=compiled_references,
online_results=online_results,
send_status_func=partial(send_event, ChatEvent.STATUS),
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
agent=agent,
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
yield result[ChatEvent.STATUS]
else:
image, status_code, improved_image_prompt, intent_type = result
generated_image, status_code, improved_image_prompt, intent_type = result
if image is None or status_code != 200:
if generated_image is None or status_code != 200:
content_obj = {
"content-type": "application/json",
"intentType": intent_type,
"detail": improved_image_prompt,
"image": image,
"image": None,
}
async for result in send_llm_response(json.dumps(content_obj)):
yield result
@ -987,7 +975,7 @@ async def chat(
await sync_to_async(save_to_conversation_log)(
q,
image,
generated_image,
user,
meta_log,
user_message_time,
@ -997,17 +985,68 @@ async def chat(
conversation_id=conversation_id,
compiled_references=compiled_references,
online_results=online_results,
uploaded_image_url=uploaded_image_url,
query_images=uploaded_images,
)
content_obj = {
"intentType": intent_type,
"inferredQueries": [improved_image_prompt],
"image": image,
"image": generated_image,
}
async for result in send_llm_response(json.dumps(content_obj)):
yield result
return
if ConversationCommand.Diagram in conversation_commands:
async for result in send_event(ChatEvent.STATUS, f"Creating diagram"):
yield result
intent_type = "excalidraw"
inferred_queries = []
diagram_description = ""
async for result in generate_excalidraw_diagram(
q=defiltered_query,
conversation_history=meta_log,
location_data=location,
note_references=compiled_references,
online_results=online_results,
query_images=uploaded_images,
user=user,
agent=agent,
send_status_func=partial(send_event, ChatEvent.STATUS),
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
yield result[ChatEvent.STATUS]
else:
better_diagram_description_prompt, excalidraw_diagram_description = result
inferred_queries.append(better_diagram_description_prompt)
diagram_description = excalidraw_diagram_description
content_obj = {
"intentType": intent_type,
"inferredQueries": inferred_queries,
"image": diagram_description,
}
await sync_to_async(save_to_conversation_log)(
q,
excalidraw_diagram_description,
user,
meta_log,
user_message_time,
intent_type="excalidraw",
inferred_queries=[better_diagram_description_prompt],
client_application=request.user.client_app,
conversation_id=conversation_id,
compiled_references=compiled_references,
online_results=online_results,
query_images=uploaded_images,
)
async for result in send_llm_response(json.dumps(content_obj)):
yield result
return
## Generate Text Output
async for result in send_event(ChatEvent.STATUS, f"**Generating a well-informed response**"):
yield result
@ -1024,7 +1063,7 @@ async def chat(
conversation_id,
location,
user_name,
uploaded_image_url,
uploaded_images,
)
# Send Response
@ -1050,9 +1089,9 @@ async def chat(
## Stream Text Response
if stream:
return StreamingResponse(event_generator(q, image=image), media_type="text/plain")
return StreamingResponse(event_generator(q, images=raw_images), media_type="text/plain")
## Non-Streaming Text Response
else:
response_iterator = event_generator(q, image=image)
response_iterator = event_generator(q, images=raw_images)
response_data = await read_chat_stream(response_iterator)
return Response(content=json.dumps(response_data), media_type="application/json", status_code=200)

View file

@ -90,7 +90,7 @@ async def login_magic_link(request: Request, form: MagicLinkForm):
request=request,
telemetry_type="api",
api="create_user",
metadata={"user_id": str(user.uuid)},
metadata={"server_id": str(user.uuid)},
)
logger.log(logging.INFO, f"🥳 New User Created: {user.uuid}")
@ -175,7 +175,7 @@ async def auth(request: Request):
request=request,
telemetry_type="api",
api="create_user",
metadata={"user_id": str(khoj_user.uuid)},
metadata={"server_id": str(khoj_user.uuid)},
)
logger.log(logging.INFO, f"🥳 New User Created: {khoj_user.uuid}")
return RedirectResponse(url=next_url, status_code=HTTP_302_FOUND)

View file

@ -1,4 +1,5 @@
import asyncio
import base64
import hashlib
import json
import logging
@ -14,6 +15,7 @@ from typing import (
Annotated,
Any,
AsyncGenerator,
Callable,
Dict,
Iterator,
List,
@ -21,7 +23,7 @@ from typing import (
Tuple,
Union,
)
from urllib.parse import parse_qs, quote, urljoin, urlparse
from urllib.parse import parse_qs, quote, unquote, urljoin, urlparse
import cron_descriptor
import pytz
@ -30,6 +32,7 @@ from apscheduler.job import Job
from apscheduler.triggers.cron import CronTrigger
from asgiref.sync import sync_to_async
from fastapi import Depends, Header, HTTPException, Request, UploadFile
from pydantic import BaseModel
from starlette.authentication import has_required_scope
from starlette.requests import URL
@ -215,6 +218,9 @@ def construct_chat_history(conversation_history: dict, n: int = 4, agent_name="A
elif chat["by"] == "khoj" and ("text-to-image" in chat["intent"].get("type")):
chat_history += f"User: {chat['intent']['query']}\n"
chat_history += f"{agent_name}: [generated image redacted for space]\n"
elif chat["by"] == "khoj" and ("excalidraw" in chat["intent"].get("type")):
chat_history += f"User: {chat['intent']['query']}\n"
chat_history += f"{agent_name}: {chat['intent']['inferred-queries'][0]}\n"
return chat_history
@ -235,6 +241,8 @@ def get_conversation_command(query: str, any_references: bool = False) -> Conver
return ConversationCommand.AutomatedTask
elif query.startswith("/summarize"):
return ConversationCommand.Summarize
elif query.startswith("/diagram"):
return ConversationCommand.Diagram
# If no relevant notes found for the given query
elif not any_references:
return ConversationCommand.General
@ -290,7 +298,7 @@ async def aget_relevant_information_sources(
conversation_history: dict,
is_task: bool,
user: KhojUser,
uploaded_image_url: str = None,
query_images: List[str] = None,
agent: Agent = None,
):
"""
@ -309,8 +317,8 @@ async def aget_relevant_information_sources(
chat_history = construct_chat_history(conversation_history)
if uploaded_image_url:
query = f"[placeholder for user attached image]\n{query}"
if query_images:
query = f"[placeholder for {len(query_images)} user attached images]\n{query}"
personality_context = (
prompts.personality_context.format(personality=agent.personality) if agent and agent.personality else ""
@ -367,7 +375,7 @@ async def aget_relevant_output_modes(
conversation_history: dict,
is_task: bool = False,
user: KhojUser = None,
uploaded_image_url: str = None,
query_images: List[str] = None,
agent: Agent = None,
):
"""
@ -389,8 +397,8 @@ async def aget_relevant_output_modes(
chat_history = construct_chat_history(conversation_history)
if uploaded_image_url:
query = f"[placeholder for user attached image]\n{query}"
if query_images:
query = f"[placeholder for {len(query_images)} user attached images]\n{query}"
personality_context = (
prompts.personality_context.format(personality=agent.personality) if agent and agent.personality else ""
@ -433,7 +441,7 @@ async def infer_webpage_urls(
conversation_history: dict,
location_data: LocationData,
user: KhojUser,
uploaded_image_url: str = None,
query_images: List[str] = None,
agent: Agent = None,
) -> List[str]:
"""
@ -459,7 +467,7 @@ async def infer_webpage_urls(
with timer("Chat actor: Infer webpage urls to read", logger):
response = await send_message_to_model_wrapper(
online_queries_prompt, uploaded_image_url=uploaded_image_url, response_type="json_object", user=user
online_queries_prompt, query_images=query_images, response_type="json_object", user=user
)
# Validate that the response is a non-empty, JSON-serializable list of URLs
@ -479,7 +487,7 @@ async def generate_online_subqueries(
conversation_history: dict,
location_data: LocationData,
user: KhojUser,
uploaded_image_url: str = None,
query_images: List[str] = None,
agent: Agent = None,
) -> List[str]:
"""
@ -505,7 +513,7 @@ async def generate_online_subqueries(
with timer("Chat actor: Generate online search subqueries", logger):
response = await send_message_to_model_wrapper(
online_queries_prompt, uploaded_image_url=uploaded_image_url, response_type="json_object", user=user
online_queries_prompt, query_images=query_images, response_type="json_object", user=user
)
# Validate that the response is a non-empty, JSON-serializable list
@ -524,7 +532,7 @@ async def generate_online_subqueries(
async def schedule_query(
q: str, conversation_history: dict, user: KhojUser, uploaded_image_url: str = None
q: str, conversation_history: dict, user: KhojUser, query_images: List[str] = None
) -> Tuple[str, ...]:
"""
Schedule the date, time to run the query. Assume the server timezone is UTC.
@ -537,7 +545,7 @@ async def schedule_query(
)
raw_response = await send_message_to_model_wrapper(
crontime_prompt, uploaded_image_url=uploaded_image_url, response_type="json_object", user=user
crontime_prompt, query_images=query_images, response_type="json_object", user=user
)
# Validate that the response is a non-empty, JSON-serializable list
@ -583,7 +591,7 @@ async def extract_relevant_summary(
q: str,
corpus: str,
conversation_history: dict,
uploaded_image_url: str = None,
query_images: List[str] = None,
user: KhojUser = None,
agent: Agent = None,
) -> Union[str, None]:
@ -612,11 +620,134 @@ async def extract_relevant_summary(
extract_relevant_information,
prompts.system_prompt_extract_relevant_summary,
user=user,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
)
return response.strip()
async def generate_excalidraw_diagram(
q: str,
conversation_history: Dict[str, Any],
location_data: LocationData,
note_references: List[Dict[str, Any]],
online_results: Optional[dict] = None,
query_images: List[str] = None,
user: KhojUser = None,
agent: Agent = None,
send_status_func: Optional[Callable] = None,
):
if send_status_func:
async for event in send_status_func("**Enhancing the Diagramming Prompt**"):
yield {ChatEvent.STATUS: event}
better_diagram_description_prompt = await generate_better_diagram_description(
q=q,
conversation_history=conversation_history,
location_data=location_data,
note_references=note_references,
online_results=online_results,
query_images=query_images,
user=user,
agent=agent,
)
if send_status_func:
async for event in send_status_func(f"**Diagram to Create:**:\n{better_diagram_description_prompt}"):
yield {ChatEvent.STATUS: event}
excalidraw_diagram_description = await generate_excalidraw_diagram_from_description(
q=better_diagram_description_prompt,
user=user,
agent=agent,
)
yield better_diagram_description_prompt, excalidraw_diagram_description
async def generate_better_diagram_description(
q: str,
conversation_history: Dict[str, Any],
location_data: LocationData,
note_references: List[Dict[str, Any]],
online_results: Optional[dict] = None,
query_images: List[str] = None,
user: KhojUser = None,
agent: Agent = None,
) -> str:
"""
Generate a diagram description from the given query and context
"""
today_date = datetime.now(tz=timezone.utc).strftime("%Y-%m-%d, %A")
personality_context = (
prompts.personality_context.format(personality=agent.personality) if agent and agent.personality else ""
)
if location_data:
location_prompt = prompts.user_location.format(location=f"{location_data}")
else:
location_prompt = "Unknown"
user_references = "\n\n".join([f"# {item['compiled']}" for item in note_references])
chat_history = construct_chat_history(conversation_history)
simplified_online_results = {}
if online_results:
for result in online_results:
if online_results[result].get("answerBox"):
simplified_online_results[result] = online_results[result]["answerBox"]
elif online_results[result].get("webpages"):
simplified_online_results[result] = online_results[result]["webpages"]
improve_diagram_description_prompt = prompts.improve_diagram_description_prompt.format(
query=q,
chat_history=chat_history,
location=location_prompt,
current_date=today_date,
references=user_references,
online_results=simplified_online_results,
personality_context=personality_context,
)
with timer("Chat actor: Generate better diagram description", logger):
response = await send_message_to_model_wrapper(
improve_diagram_description_prompt, query_images=query_images, user=user
)
response = response.strip()
if response.startswith(('"', "'")) and response.endswith(('"', "'")):
response = response[1:-1]
return response
async def generate_excalidraw_diagram_from_description(
q: str,
user: KhojUser = None,
agent: Agent = None,
) -> str:
personality_context = (
prompts.personality_context.format(personality=agent.personality) if agent and agent.personality else ""
)
excalidraw_diagram_generation = prompts.excalidraw_diagram_generation_prompt.format(
personality_context=personality_context,
query=q,
)
with timer("Chat actor: Generate excalidraw diagram", logger):
raw_response = await send_message_to_model_wrapper(message=excalidraw_diagram_generation, user=user)
raw_response = raw_response.strip()
raw_response = remove_json_codeblock(raw_response)
response: Dict[str, str] = json.loads(raw_response)
if not response or not isinstance(response, List) or not isinstance(response[0], Dict):
# TODO Some additional validation here that it's a valid Excalidraw diagram
raise AssertionError(f"Invalid response for improving diagram description: {response}")
return response
async def generate_better_image_prompt(
q: str,
conversation_history: str,
@ -624,7 +755,7 @@ async def generate_better_image_prompt(
note_references: List[Dict[str, Any]],
online_results: Optional[dict] = None,
model_type: Optional[str] = None,
uploaded_image_url: Optional[str] = None,
query_images: Optional[List[str]] = None,
user: KhojUser = None,
agent: Agent = None,
) -> str:
@ -676,7 +807,7 @@ async def generate_better_image_prompt(
)
with timer("Chat actor: Generate contextual image prompt", logger):
response = await send_message_to_model_wrapper(image_prompt, uploaded_image_url=uploaded_image_url, user=user)
response = await send_message_to_model_wrapper(image_prompt, query_images=query_images, user=user)
response = response.strip()
if response.startswith(('"', "'")) and response.endswith(('"', "'")):
response = response[1:-1]
@ -689,11 +820,11 @@ async def send_message_to_model_wrapper(
system_message: str = "",
response_type: str = "text",
user: KhojUser = None,
uploaded_image_url: str = None,
query_images: List[str] = None,
):
conversation_config: ChatModelOptions = await ConversationAdapters.aget_default_conversation_config(user)
vision_available = conversation_config.vision_enabled
if not vision_available and uploaded_image_url:
if not vision_available and query_images:
vision_enabled_config = await ConversationAdapters.aget_vision_enabled_config()
if vision_enabled_config:
conversation_config = vision_enabled_config
@ -746,7 +877,7 @@ async def send_message_to_model_wrapper(
max_prompt_size=max_tokens,
tokenizer_name=tokenizer,
vision_enabled=vision_available,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
model_type=conversation_config.model_type,
)
@ -766,7 +897,7 @@ async def send_message_to_model_wrapper(
max_prompt_size=max_tokens,
tokenizer_name=tokenizer,
vision_enabled=vision_available,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
model_type=conversation_config.model_type,
)
@ -784,7 +915,8 @@ async def send_message_to_model_wrapper(
max_prompt_size=max_tokens,
tokenizer_name=tokenizer,
vision_enabled=vision_available,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
model_type=conversation_config.model_type,
)
return gemini_send_message_to_model(
@ -875,6 +1007,7 @@ def send_message_to_model_wrapper_sync(
model_name=chat_model,
max_prompt_size=max_tokens,
vision_enabled=vision_available,
model_type=conversation_config.model_type,
)
return gemini_send_message_to_model(
@ -900,7 +1033,7 @@ def generate_chat_response(
conversation_id: str = None,
location_data: LocationData = None,
user_name: Optional[str] = None,
uploaded_image_url: Optional[str] = None,
query_images: Optional[List[str]] = None,
) -> Tuple[Union[ThreadedGenerator, Iterator[str]], Dict[str, str]]:
# Initialize Variables
chat_response = None
@ -919,12 +1052,12 @@ def generate_chat_response(
inferred_queries=inferred_queries,
client_application=client_application,
conversation_id=conversation_id,
uploaded_image_url=uploaded_image_url,
query_images=query_images,
)
conversation_config = ConversationAdapters.get_valid_conversation_config(user, conversation)
vision_available = conversation_config.vision_enabled
if not vision_available and uploaded_image_url:
if not vision_available and query_images:
vision_enabled_config = ConversationAdapters.get_vision_enabled_config()
if vision_enabled_config:
conversation_config = vision_enabled_config
@ -955,7 +1088,7 @@ def generate_chat_response(
chat_response = converse(
compiled_references,
q,
image_url=uploaded_image_url,
query_images=query_images,
online_results=online_results,
conversation_log=meta_log,
model=chat_model,
@ -993,8 +1126,9 @@ def generate_chat_response(
chat_response = converse_gemini(
compiled_references,
q,
online_results,
meta_log,
query_images=query_images,
online_results=online_results,
conversation_log=meta_log,
model=conversation_config.chat_model,
api_key=api_key,
completion_func=partial_completion,
@ -1004,6 +1138,7 @@ def generate_chat_response(
location_data=location_data,
user_name=user_name,
agent=agent,
vision_available=vision_available,
)
metadata.update({"chat_model": conversation_config.chat_model})
@ -1015,6 +1150,22 @@ def generate_chat_response(
return chat_response, metadata
class ChatRequestBody(BaseModel):
q: str
n: Optional[int] = 7
d: Optional[float] = None
stream: Optional[bool] = False
title: Optional[str] = None
conversation_id: Optional[str] = None
city: Optional[str] = None
region: Optional[str] = None
country: Optional[str] = None
country_code: Optional[str] = None
timezone: Optional[str] = None
images: Optional[list[str]] = None
create_new: Optional[bool] = False
class ApiUserRateLimiter:
def __init__(self, requests: int, subscribed_requests: int, window: int, slug: str):
self.requests = requests
@ -1060,13 +1211,58 @@ class ApiUserRateLimiter:
)
raise HTTPException(
status_code=429,
detail="We're glad you're enjoying Khoj! You've exceeded your usage limit for today. Come back tomorrow or subscribe to increase your usage limit via [your settings](https://app.khoj.dev/settings).",
detail="I'm glad you're enjoying interacting with me! But you've exceeded your usage limit for today. Come back tomorrow or subscribe to increase your usage limit via [your settings](https://app.khoj.dev/settings).",
)
# Add the current request to the cache
UserRequests.objects.create(user=user, slug=self.slug)
class ApiImageRateLimiter:
def __init__(self, max_images: int = 10, max_combined_size_mb: float = 10):
self.max_images = max_images
self.max_combined_size_mb = max_combined_size_mb
def __call__(self, request: Request, body: ChatRequestBody):
if state.billing_enabled is False:
return
# Rate limiting is disabled if user unauthenticated.
# Other systems handle authentication
if not request.user.is_authenticated:
return
if not body.images:
return
# Check number of images
if len(body.images) > self.max_images:
raise HTTPException(
status_code=429,
detail=f"Those are way too many images for me! I can handle up to {self.max_images} images per message.",
)
# Check total size of images
total_size_mb = 0.0
for image in body.images:
# Unquote the image in case it's URL encoded
image = unquote(image)
# Assuming the image is a base64 encoded string
# Remove the data:image/jpeg;base64, part if present
if "," in image:
image = image.split(",", 1)[1]
# Decode base64 to get the actual size
image_bytes = base64.b64decode(image)
total_size_mb += len(image_bytes) / (1024 * 1024) # Convert bytes to MB
if total_size_mb > self.max_combined_size_mb:
raise HTTPException(
status_code=429,
detail=f"Those images are way too large for me! I can handle up to {self.max_combined_size_mb}MB of images per message.",
)
class ConversationCommandRateLimiter:
def __init__(self, trial_rate_limit: int, subscribed_rate_limit: int, slug: str):
self.slug = slug

View file

@ -82,7 +82,7 @@ async def subscribe(request: Request):
request=request,
telemetry_type="api",
api="create_user",
metadata={"user_id": str(user.user.uuid)},
metadata={"server_id": str(user.user.uuid)},
)
logger.log(logging.INFO, f"🥳 New User Created: {user.user.uuid}")

View file

@ -51,17 +51,6 @@ def chat_page(request: Request):
)
@web_client.get("/experimental", response_class=FileResponse)
@requires(["authenticated"], redirect="login_page")
def experimental_page(request: Request):
return templates.TemplateResponse(
"index.html",
context={
"request": request,
},
)
@web_client.get("/factchecker", response_class=FileResponse)
def fact_checker_page(request: Request):
return templates.TemplateResponse(

View file

@ -318,6 +318,7 @@ class ConversationCommand(str, Enum):
Automation = "automation"
AutomatedTask = "automated_task"
Summarize = "summarize"
Diagram = "diagram"
command_descriptions = {
@ -326,10 +327,11 @@ command_descriptions = {
ConversationCommand.Default: "The default command when no command specified. It intelligently auto-switches between general and notes mode.",
ConversationCommand.Online: "Search for information on the internet.",
ConversationCommand.Webpage: "Get information from webpage suggested by you.",
ConversationCommand.Image: "Generate images by describing your imagination in words.",
ConversationCommand.Image: "Generate illustrative, creative images by describing your imagination in words.",
ConversationCommand.Automation: "Automatically run your query at a specified time or interval.",
ConversationCommand.Help: "Get help with how to use or setup Khoj from the documentation",
ConversationCommand.Summarize: "Get help with a question pertaining to an entire document.",
ConversationCommand.Diagram: "Draw a flowchart, diagram, or any other visual representation best expressed with primitives like lines, rectangles, and text.",
}
command_descriptions_for_agent = {
@ -350,15 +352,17 @@ tool_descriptions_for_llm = {
}
mode_descriptions_for_llm = {
ConversationCommand.Image: "Use this if the user is requesting you to generate a picture based on their description.",
ConversationCommand.Image: "Use this if the user is requesting you to create a new picture based on their description.",
ConversationCommand.Automation: "Use this if you are confident the user is requesting a response at a scheduled date, time and frequency",
ConversationCommand.Text: "Use this if the other response modes don't seem to fit the query.",
ConversationCommand.Text: "Use this if a normal text response would be sufficient for accurately responding to the query.",
ConversationCommand.Diagram: "Use this if the user is requesting a visual representation that requires primitives like lines, rectangles, and text.",
}
mode_descriptions_for_agent = {
ConversationCommand.Image: "Agent can generate image in response.",
ConversationCommand.Automation: "Agent can schedule a task to run at a scheduled date, time and frequency in response.",
ConversationCommand.Text: "Agent can generate text in response.",
ConversationCommand.Diagram: "Agent can generate a visual representation that requires primitives like lines, rectangles, and text.",
}

View file

@ -178,6 +178,13 @@ def api_user4(default_user4):
)
@pytest.mark.django_db
@pytest.fixture
def default_openai_chat_model_option():
chat_model = ChatModelOptionsFactory(chat_model="gpt-4o-mini", model_type="openai")
return chat_model
@pytest.mark.django_db
@pytest.fixture
def offline_agent():

211
tests/test_agents.py Normal file
View file

@ -0,0 +1,211 @@
# tests/test_agents.py
import os
import pytest
from asgiref.sync import sync_to_async
from khoj.database.adapters import AgentAdapters
from khoj.database.models import Agent, ChatModelOptions, Entry, KhojUser
from khoj.routers.api import execute_search
from khoj.utils.helpers import get_absolute_path
from tests.helpers import ChatModelOptionsFactory
def test_create_default_agent(default_user: KhojUser):
ChatModelOptionsFactory()
agent = AgentAdapters.create_default_agent(default_user)
assert agent is not None
assert agent.input_tools == []
assert agent.output_modes == []
assert agent.privacy_level == Agent.PrivacyLevel.PUBLIC
assert agent.managed_by_admin == True
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_create_or_update_agent(default_user: KhojUser, default_openai_chat_model_option: ChatModelOptions):
new_agent = await AgentAdapters.aupdate_agent(
default_user,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PRIVATE,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[],
[],
[],
)
assert new_agent is not None
assert new_agent.name == "Test Agent"
assert new_agent.privacy_level == Agent.PrivacyLevel.PRIVATE
assert new_agent.creator == default_user
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_create_or_update_agent_with_knowledge_base(
default_user2: KhojUser, default_openai_chat_model_option: ChatModelOptions, chat_client
):
full_filename = get_absolute_path("tests/data/markdown/having_kids.markdown")
new_agent = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PRIVATE,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename],
[],
[],
)
entries = await sync_to_async(list)(Entry.objects.filter(agent=new_agent))
file_names = set()
for entry in entries:
file_names.add(entry.file_path)
assert new_agent is not None
assert new_agent.name == "Test Agent"
assert new_agent.privacy_level == Agent.PrivacyLevel.PRIVATE
assert new_agent.creator == default_user2
assert len(entries) > 0
assert full_filename in file_names
assert len(file_names) == 1
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_create_or_update_agent_with_knowledge_base_and_search(
default_user2: KhojUser, default_openai_chat_model_option: ChatModelOptions, chat_client
):
full_filename = get_absolute_path("tests/data/markdown/having_kids.markdown")
new_agent = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PRIVATE,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename],
[],
[],
)
search_result = await execute_search(user=default_user2, q="having kids", agent=new_agent)
assert len(search_result) == 5
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_agent_with_knowledge_base_and_search_not_creator(
default_user2: KhojUser, default_openai_chat_model_option: ChatModelOptions, chat_client, default_user3: KhojUser
):
full_filename = get_absolute_path("tests/data/markdown/having_kids.markdown")
new_agent = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PUBLIC,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename],
[],
[],
)
search_result = await execute_search(user=default_user3, q="having kids", agent=new_agent)
assert len(search_result) == 5
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_agent_with_knowledge_base_and_search_not_creator_and_private(
default_user2: KhojUser, default_openai_chat_model_option: ChatModelOptions, chat_client, default_user3: KhojUser
):
full_filename = get_absolute_path("tests/data/markdown/having_kids.markdown")
new_agent = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PRIVATE,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename],
[],
[],
)
search_result = await execute_search(user=default_user3, q="having kids", agent=new_agent)
assert len(search_result) == 0
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_agent_with_knowledge_base_and_search_not_creator_and_private_accessible_to_none(
default_user2: KhojUser, default_openai_chat_model_option: ChatModelOptions, chat_client
):
full_filename = get_absolute_path("tests/data/markdown/having_kids.markdown")
new_agent = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PRIVATE,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename],
[],
[],
)
search_result = await execute_search(user=None, q="having kids", agent=new_agent)
assert len(search_result) == 5
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_multiple_agents_with_knowledge_base_and_users(
default_user2: KhojUser, default_openai_chat_model_option: ChatModelOptions, chat_client, default_user3: KhojUser
):
full_filename = get_absolute_path("tests/data/markdown/having_kids.markdown")
new_agent = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent",
"Test Personality",
Agent.PrivacyLevel.PUBLIC,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename],
[],
[],
)
full_filename2 = get_absolute_path("tests/data/markdown/Namita.markdown")
new_agent2 = await AgentAdapters.aupdate_agent(
default_user2,
"Test Agent 2",
"Test Personality",
Agent.PrivacyLevel.PUBLIC,
"icon",
"color",
default_openai_chat_model_option.chat_model,
[full_filename2],
[],
[],
)
search_result = await execute_search(user=default_user3, q="having kids", agent=new_agent2)
search_result2 = await execute_search(user=default_user3, q="Namita", agent=new_agent2)
assert len(search_result) == 0
assert len(search_result2) == 1

View file

@ -1,6 +1,8 @@
import os
import re
import pytest
from khoj.processor.content.pdf.pdf_to_entries import PdfToEntries
from khoj.utils.fs_syncer import get_pdf_files
from khoj.utils.rawconfig import TextContentConfig
@ -37,6 +39,7 @@ def test_multi_page_pdf_to_jsonl():
assert len(entries[1]) == 6
@pytest.mark.skip(reason="Temporarily disabled OCR due to performance issues")
def test_ocr_page_pdf_to_jsonl():
"Convert multiple pages from single PDF file to jsonl."
# Arrange

View file

@ -78,5 +78,9 @@
"1.24.0": "0.15.0",
"1.24.1": "0.15.0",
"1.25.0": "0.15.0",
"1.26.0": "0.15.0"
"1.26.0": "0.15.0",
"1.26.1": "0.15.0",
"1.26.2": "0.15.0",
"1.26.3": "0.15.0",
"1.26.4": "0.15.0"
}