mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Resolve paths to absolute paths once. Use pathlib glob directly
This commit is contained in:
parent
ca0a22f4dd
commit
91a2c598fe
1 changed files with 11 additions and 9 deletions
|
@ -1,7 +1,5 @@
|
||||||
import sentence_transformers
|
|
||||||
from sentence_transformers import SentenceTransformer, util
|
from sentence_transformers import SentenceTransformer, util
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import glob
|
|
||||||
import torch
|
import torch
|
||||||
import argparse
|
import argparse
|
||||||
import pathlib
|
import pathlib
|
||||||
|
@ -17,7 +15,7 @@ def initialize_model():
|
||||||
|
|
||||||
|
|
||||||
def extract_entries(image_directory, verbose=False):
|
def extract_entries(image_directory, verbose=False):
|
||||||
image_names = glob.glob(f'{image_directory.expanduser()}/*.jpg')
|
image_names = list(image_directory.glob('*.jpg'))
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f'Found {len(image_names)} images in {image_directory}')
|
print(f'Found {len(image_names)} images in {image_directory}')
|
||||||
return image_names
|
return image_names
|
||||||
|
@ -28,7 +26,7 @@ def compute_embeddings(image_names, model, embeddings_file, verbose=False):
|
||||||
|
|
||||||
# Load pre-computed embeddings from file if exists
|
# Load pre-computed embeddings from file if exists
|
||||||
if embeddings_file.exists():
|
if embeddings_file.exists():
|
||||||
image_embeddings = torch.load(embeddings_file.expanduser())
|
image_embeddings = torch.load(embeddings_file)
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f"Loaded pre-computed embeddings from {embeddings_file}")
|
print(f"Loaded pre-computed embeddings from {embeddings_file}")
|
||||||
|
|
||||||
|
@ -41,7 +39,7 @@ def compute_embeddings(image_names, model, embeddings_file, verbose=False):
|
||||||
|
|
||||||
if len(images) > 0:
|
if len(images) > 0:
|
||||||
image_embeddings = model.encode(images, batch_size=128, convert_to_tensor=True, show_progress_bar=True)
|
image_embeddings = model.encode(images, batch_size=128, convert_to_tensor=True, show_progress_bar=True)
|
||||||
torch.save(image_embeddings, embeddings_file.expanduser())
|
torch.save(image_embeddings, embeddings_file)
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f"Saved computed embeddings to {embeddings_file}")
|
print(f"Saved computed embeddings to {embeddings_file}")
|
||||||
|
|
||||||
|
@ -72,7 +70,7 @@ def search(query, image_embeddings, model, count=3, verbose=False):
|
||||||
def render_results(hits, image_names, image_directory, count):
|
def render_results(hits, image_names, image_directory, count):
|
||||||
for hit in hits[:count]:
|
for hit in hits[:count]:
|
||||||
print(image_names[hit['corpus_id']])
|
print(image_names[hit['corpus_id']])
|
||||||
image_path = image_directory.joinpath(image_names[hit['corpus_id']]).expanduser()
|
image_path = image_directory.joinpath(image_names[hit['corpus_id']])
|
||||||
with Image.open(image_path) as img:
|
with Image.open(image_path) as img:
|
||||||
img.show()
|
img.show()
|
||||||
|
|
||||||
|
@ -87,14 +85,18 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
|
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Resolve file, directory paths in args to absolute paths
|
||||||
|
embeddings_file = args.embeddings_file.expanduser().resolve()
|
||||||
|
image_directory = args.image_directory.expanduser().resolve(strict=True)
|
||||||
|
|
||||||
# Initialize Model
|
# Initialize Model
|
||||||
model, count = initialize_model()
|
model, count = initialize_model()
|
||||||
|
|
||||||
# Extract Entries
|
# Extract Entries
|
||||||
image_names = extract_entries(args.image_directory, args.verbose)
|
image_names = extract_entries(image_directory, args.verbose)
|
||||||
|
|
||||||
# Compute or Load Embeddings
|
# Compute or Load Embeddings
|
||||||
image_embeddings = compute_embeddings(image_names, model, args.embeddings_file, args.verbose)
|
image_embeddings = compute_embeddings(image_names, model, embeddings_file, args.verbose)
|
||||||
|
|
||||||
# Run User Queries on Entries in Interactive Mode
|
# Run User Queries on Entries in Interactive Mode
|
||||||
while args.interactive:
|
while args.interactive:
|
||||||
|
@ -107,4 +109,4 @@ if __name__ == '__main__':
|
||||||
hits = search(user_query, image_embeddings, model, args.results_count, args.verbose)
|
hits = search(user_query, image_embeddings, model, args.results_count, args.verbose)
|
||||||
|
|
||||||
# render results
|
# render results
|
||||||
render_results(hits, image_names, args.image_directory, count=args.results_count)
|
render_results(hits, image_names, image_directory, count=args.results_count)
|
||||||
|
|
Loading…
Reference in a new issue