mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Retrieve most relevant entries for a query using MSMarco based bi-encoder
Returns best 3 results ranked by MSMarco based biencoder score of query match to entries from org-mode notes
This commit is contained in:
parent
0ef5495701
commit
9864a2b551
1 changed files with 71 additions and 0 deletions
71
asymmetric.py
Normal file
71
asymmetric.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import json
|
||||
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
||||
import time
|
||||
import gzip
|
||||
import os
|
||||
import sys
|
||||
|
||||
# We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
||||
model_name = 'msmarco-MiniLM-L-6-v3'
|
||||
bi_encoder = SentenceTransformer(model_name)
|
||||
top_k = 100 # Number of passages we want to retrieve with the bi-encoder
|
||||
|
||||
# The bi-encoder will retrieve 100 documents.
|
||||
# We use a cross-encoder, to re-rank the results list to improve the quality
|
||||
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
||||
|
||||
# We split these articles into paragraphs and encode them with the bi-encoder
|
||||
notes_filepath = 'Notes.jsonl.gz'
|
||||
|
||||
passages = []
|
||||
with gzip.open(notes_filepath, 'rt', encoding='utf8') as fIn:
|
||||
for line in fIn:
|
||||
data = json.loads(line.strip())
|
||||
passages.extend([f'{data["Title"]}\n{data["Body"] if "Body" in data else ""}'])
|
||||
|
||||
print(f"Passages: {len(passages)}")
|
||||
|
||||
# Here, we compute the corpus_embeddings from scratch (which can take a while depending on the GPU)
|
||||
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
|
||||
|
||||
# This function will search all notes for passages that answer the query
|
||||
def search(query):
|
||||
print("Input question:", query)
|
||||
|
||||
##### Sematic Search #####
|
||||
# Encode the query using the bi-encoder and find potentially relevant passages
|
||||
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
||||
#question_embedding = question_embedding.cuda()
|
||||
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
|
||||
hits = hits[0] # Get the hits for the first query
|
||||
|
||||
##### Re-Ranking #####
|
||||
## Now, score all retrieved passages with the cross_encoder
|
||||
#cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
||||
#cross_scores = cross_encoder.predict(cross_inp)
|
||||
#
|
||||
## Sort results by the cross-encoder scores
|
||||
#for idx in range(len(cross_scores)):
|
||||
# hits[idx]['cross-score'] = cross_scores[idx]
|
||||
|
||||
# Output of top-5 hits from bi-encoder
|
||||
print("\n-------------------------\n")
|
||||
print("Top-3 Bi-Encoder Retrieval hits")
|
||||
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
||||
for hit in hits[0:3]:
|
||||
print("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))
|
||||
|
||||
# Output of top-5 hits from re-ranker
|
||||
#print("\n-------------------------\n")
|
||||
#print("Top-3 Cross-Encoder Re-ranker hits")
|
||||
#hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
||||
#for hit in hits[0:3]:
|
||||
# print("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))
|
||||
|
||||
while True:
|
||||
user_query = input("Enter your query: ")
|
||||
if user_query == "exit":
|
||||
exit(0)
|
||||
search(query = user_query)
|
Loading…
Reference in a new issue