Test memory leak on MPS device when generating vector embeddings

Slope threshold of 2.0 determined qualitatively on local Mac device
Minor unused import and clean-up
This commit is contained in:
Debanjum Singh Solanky 2023-11-05 03:32:29 -08:00
parent ef24485ada
commit a4f407f595
4 changed files with 41 additions and 7 deletions

View file

@ -92,6 +92,7 @@ test = [
"factory-boy >= 3.2.1", "factory-boy >= 3.2.1",
"trio >= 0.22.0", "trio >= 0.22.0",
"pytest-xdist", "pytest-xdist",
"psutil >= 5.8.0",
] ]
dev = [ dev = [
"khoj-assistant[test]", "khoj-assistant[test]",

View file

@ -1,4 +1,3 @@
import secrets
from typing import Type, TypeVar, List from typing import Type, TypeVar, List
from datetime import date from datetime import date
import secrets import secrets
@ -36,9 +35,6 @@ from database.models import (
OfflineChatProcessorConversationConfig, OfflineChatProcessorConversationConfig,
) )
from khoj.utils.helpers import generate_random_name from khoj.utils.helpers import generate_random_name
from khoj.utils.rawconfig import (
ConversationProcessorConfig as UserConversationProcessorConfig,
)
from khoj.search_filter.word_filter import WordFilter from khoj.search_filter.word_filter import WordFilter
from khoj.search_filter.file_filter import FileFilter from khoj.search_filter.file_filter import FileFilter
from khoj.search_filter.date_filter import DateFilter from khoj.search_filter.date_filter import DateFilter

View file

@ -8,10 +8,10 @@ from khoj.utils.rawconfig import SearchResponse
class EmbeddingsModel: class EmbeddingsModel:
def __init__(self): def __init__(self):
self.model_name = "thenlper/gte-small"
self.encode_kwargs = {"normalize_embeddings": True} self.encode_kwargs = {"normalize_embeddings": True}
model_kwargs = {"device": get_device()} self.model_kwargs = {"device": get_device()}
self.embeddings_model = SentenceTransformer(self.model_name, **model_kwargs) self.model_name = "thenlper/gte-small"
self.embeddings_model = SentenceTransformer(self.model_name, **self.model_kwargs)
def embed_query(self, query): def embed_query(self, query):
return self.embeddings_model.encode([query], show_progress_bar=False, **self.encode_kwargs)[0] return self.embeddings_model.encode([query], show_progress_bar=False, **self.encode_kwargs)[0]

View file

@ -1,3 +1,14 @@
# Standard Packages
import numpy as np
import psutil
from scipy.stats import linregress
import secrets
# External Packages
import pytest
# Internal Packages
from khoj.processor.embeddings import EmbeddingsModel
from khoj.utils import helpers from khoj.utils import helpers
@ -44,3 +55,29 @@ def test_lru_cache():
cache["b"] # accessing 'b' makes it the most recently used item cache["b"] # accessing 'b' makes it the most recently used item
cache["d"] = 4 # so 'c' is deleted from the cache instead of 'b' cache["d"] = 4 # so 'c' is deleted from the cache instead of 'b'
assert cache == {"b": 2, "d": 4} assert cache == {"b": 2, "d": 4}
@pytest.mark.skip(reason="Memory leak exists on GPU, MPS devices")
def test_encode_docs_memory_leak():
# Arrange
iterations = 50
batch_size = 20
embeddings_model = EmbeddingsModel()
memory_usage_trend = []
# Act
# Encode random strings repeatedly and record memory usage trend
for iteration in range(iterations):
random_docs = [" ".join(secrets.token_hex(5) for _ in range(10)) for _ in range(batch_size)]
a = [embeddings_model.embed_documents(random_docs)]
memory_usage_trend += [psutil.Process().memory_info().rss / (1024 * 1024)]
print(f"{iteration:02d}, {memory_usage_trend[-1]:.2f}", flush=True)
# Calculate slope of line fitting memory usage history
memory_usage_trend = np.array(memory_usage_trend)
slope, _, _, _, _ = linregress(np.arange(len(memory_usage_trend)), memory_usage_trend)
# Assert
# If slope is positive memory utilization is increasing
# Positive threshold of 2, from observing memory usage trend on MPS vs CPU device
assert slope < 2, f"Memory usage increasing at ~{slope:.2f} MB per iteration"