mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 23:48:56 +01:00
Test memory leak on MPS device when generating vector embeddings
Slope threshold of 2.0 determined qualitatively on local Mac device Minor unused import and clean-up
This commit is contained in:
parent
ef24485ada
commit
a4f407f595
4 changed files with 41 additions and 7 deletions
|
@ -92,6 +92,7 @@ test = [
|
|||
"factory-boy >= 3.2.1",
|
||||
"trio >= 0.22.0",
|
||||
"pytest-xdist",
|
||||
"psutil >= 5.8.0",
|
||||
]
|
||||
dev = [
|
||||
"khoj-assistant[test]",
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import secrets
|
||||
from typing import Type, TypeVar, List
|
||||
from datetime import date
|
||||
import secrets
|
||||
|
@ -36,9 +35,6 @@ from database.models import (
|
|||
OfflineChatProcessorConversationConfig,
|
||||
)
|
||||
from khoj.utils.helpers import generate_random_name
|
||||
from khoj.utils.rawconfig import (
|
||||
ConversationProcessorConfig as UserConversationProcessorConfig,
|
||||
)
|
||||
from khoj.search_filter.word_filter import WordFilter
|
||||
from khoj.search_filter.file_filter import FileFilter
|
||||
from khoj.search_filter.date_filter import DateFilter
|
||||
|
|
|
@ -8,10 +8,10 @@ from khoj.utils.rawconfig import SearchResponse
|
|||
|
||||
class EmbeddingsModel:
|
||||
def __init__(self):
|
||||
self.model_name = "thenlper/gte-small"
|
||||
self.encode_kwargs = {"normalize_embeddings": True}
|
||||
model_kwargs = {"device": get_device()}
|
||||
self.embeddings_model = SentenceTransformer(self.model_name, **model_kwargs)
|
||||
self.model_kwargs = {"device": get_device()}
|
||||
self.model_name = "thenlper/gte-small"
|
||||
self.embeddings_model = SentenceTransformer(self.model_name, **self.model_kwargs)
|
||||
|
||||
def embed_query(self, query):
|
||||
return self.embeddings_model.encode([query], show_progress_bar=False, **self.encode_kwargs)[0]
|
||||
|
|
|
@ -1,3 +1,14 @@
|
|||
# Standard Packages
|
||||
import numpy as np
|
||||
import psutil
|
||||
from scipy.stats import linregress
|
||||
import secrets
|
||||
|
||||
# External Packages
|
||||
import pytest
|
||||
|
||||
# Internal Packages
|
||||
from khoj.processor.embeddings import EmbeddingsModel
|
||||
from khoj.utils import helpers
|
||||
|
||||
|
||||
|
@ -44,3 +55,29 @@ def test_lru_cache():
|
|||
cache["b"] # accessing 'b' makes it the most recently used item
|
||||
cache["d"] = 4 # so 'c' is deleted from the cache instead of 'b'
|
||||
assert cache == {"b": 2, "d": 4}
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Memory leak exists on GPU, MPS devices")
|
||||
def test_encode_docs_memory_leak():
|
||||
# Arrange
|
||||
iterations = 50
|
||||
batch_size = 20
|
||||
embeddings_model = EmbeddingsModel()
|
||||
memory_usage_trend = []
|
||||
|
||||
# Act
|
||||
# Encode random strings repeatedly and record memory usage trend
|
||||
for iteration in range(iterations):
|
||||
random_docs = [" ".join(secrets.token_hex(5) for _ in range(10)) for _ in range(batch_size)]
|
||||
a = [embeddings_model.embed_documents(random_docs)]
|
||||
memory_usage_trend += [psutil.Process().memory_info().rss / (1024 * 1024)]
|
||||
print(f"{iteration:02d}, {memory_usage_trend[-1]:.2f}", flush=True)
|
||||
|
||||
# Calculate slope of line fitting memory usage history
|
||||
memory_usage_trend = np.array(memory_usage_trend)
|
||||
slope, _, _, _, _ = linregress(np.arange(len(memory_usage_trend)), memory_usage_trend)
|
||||
|
||||
# Assert
|
||||
# If slope is positive memory utilization is increasing
|
||||
# Positive threshold of 2, from observing memory usage trend on MPS vs CPU device
|
||||
assert slope < 2, f"Memory usage increasing at ~{slope:.2f} MB per iteration"
|
||||
|
|
Loading…
Reference in a new issue