mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Improve and simplify Khoj Chat using ChatGPT
- Set context by either including last 2 chat messages from active session or past 2 conversation summaries from conversation logs - Set personality in system message - Place personality system message before last completed back & forth This may stop ChatGPT forgetting its personality as conversation progresses given: - The conditioning based on system role messages is light - If system message is too far back in conversation history, the model may forget its personality conditioning - If system message at end of conversation, the model can think its the start of a new conversation - Inserting the system message before last completed back & forth should prevent ChatGPT from assuming its the start of a new conversation while not losing personality conditioning from the system message - Simplfy the Khoj Chat API to for now just answer from users notes instead of trying to infer other potential interaction types. - This is the default expected behavior from the feature anyway - Use the compiled text of the top 2 search results for context - Benefits of using ChatGPT - Better model - 1/10th the price - No hand rolled prompt required to make GPT provide more chatty, assistant type responses
This commit is contained in:
parent
9d42b5d60d
commit
ad1f1cf620
3 changed files with 63 additions and 104 deletions
|
@ -40,7 +40,7 @@ dependencies = [
|
|||
"defusedxml == 0.7.1",
|
||||
"fastapi == 0.77.1",
|
||||
"jinja2 == 3.1.2",
|
||||
"openai == 0.20.0",
|
||||
"openai >= 0.27.0",
|
||||
"pillow == 9.3.0",
|
||||
"pydantic == 1.9.1",
|
||||
"pyqt6 == 6.3.1",
|
||||
|
|
|
@ -114,104 +114,75 @@ A:{ "search-type": "notes" }"""
|
|||
return json.loads(story.strip(empty_escape_sequences))
|
||||
|
||||
|
||||
def understand(text, model, api_key=None, temperature=0.5, max_tokens=100, verbose=0):
|
||||
def converse(text, user_query, active_session_length=0, conversation_log=None, api_key=None, temperature=0):
|
||||
"""
|
||||
Understand user input using OpenAI's GPT
|
||||
Converse with user using OpenAI's ChatGPT
|
||||
"""
|
||||
# Initialize Variables
|
||||
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
||||
understand_primer = """
|
||||
Objective: Extract intent and trigger emotion information as JSON from each chat message
|
||||
|
||||
Potential intent types and valid argument values are listed below:
|
||||
- intent
|
||||
- remember(memory-type, query);
|
||||
- memory-type=["companion","notes","ledger","image","music"]
|
||||
- search(search-type, query);
|
||||
- search-type=["google"]
|
||||
- generate(activity, query);
|
||||
- activity=["paint","write","chat"]
|
||||
- trigger-emotion(emotion)
|
||||
- emotion=["happy","confidence","fear","surprise","sadness","disgust","anger","shy","curiosity","calm"]
|
||||
|
||||
Some examples are given below for reference:
|
||||
Q: How are you doing?
|
||||
A: { "intent": {"type": "generate", "activity": "chat", "query": "How are you doing?"}, "trigger-emotion": "happy" }
|
||||
Q: Do you remember what I told you about my brother Antoine when we were at the beach?
|
||||
A: { "intent": {"type": "remember", "memory-type": "companion", "query": "Brother Antoine when we were at the beach"}, "trigger-emotion": "curiosity" }
|
||||
Q: what was that fantasy story you told me last time?
|
||||
A: { "intent": {"type": "remember", "memory-type": "companion", "query": "fantasy story told last time"}, "trigger-emotion": "curiosity" }
|
||||
Q: Let's make some drawings about the stars on a clear full moon night!
|
||||
A: { "intent": {"type": "generate", "activity": "paint", "query": "stars on a clear full moon night"}, "trigger-emotion: "happy" }
|
||||
Q: Do you know anything about Lebanon cuisine in the 18th century?
|
||||
A: { "intent": {"type": "search", "search-type": "google", "query": "lebanon cusine in the 18th century"}, "trigger-emotion; "confidence" }
|
||||
Q: Tell me a scary story
|
||||
A: { "intent": {"type": "generate", "activity": "write", "query": "A scary story"}, "trigger-emotion": "fear" }
|
||||
Q: What fiction book was I reading last week about AI starship?
|
||||
A: { "intent": {"type": "remember", "memory-type": "notes", "query": "fiction book about AI starship last week"}, "trigger-emotion": "curiosity" }
|
||||
Q: How much did I spend at Subway for dinner last time?
|
||||
A: { "intent": {"type": "remember", "memory-type": "ledger", "query": "last Subway dinner"}, "trigger-emotion": "calm" }
|
||||
Q: I'm feeling sleepy
|
||||
A: { "intent": {"type": "generate", "activity": "chat", "query": "I'm feeling sleepy"}, "trigger-emotion": "calm" }
|
||||
Q: What was that popular Sri lankan song that Alex had mentioned?
|
||||
A: { "intent": {"type": "remember", "memory-type": "music", "query": "popular Sri lankan song mentioned by Alex"}, "trigger-emotion": "curiosity" }
|
||||
Q: You're pretty funny!
|
||||
A: { "intent": {"type": "generate", "activity": "chat", "query": "You're pretty funny!"}, "trigger-emotion": "shy" }
|
||||
Q: Can you recommend a movie to watch from my notes?
|
||||
A: { "intent": {"type": "remember", "memory-type": "notes", "query": "recommend movie to watch"}, "trigger-emotion": "curiosity" }
|
||||
Q: When did I go surfing last?
|
||||
A: { "intent": {"type": "remember", "memory-type": "notes", "query": "When did I go surfing last"}, "trigger-emotion": "calm" }
|
||||
Q: Can you dance for me?
|
||||
A: { "intent": {"type": "generate", "activity": "chat", "query": "Can you dance for me?"}, "trigger-emotion": "sad" }"""
|
||||
|
||||
# Setup Prompt with Understand Primer
|
||||
prompt = message_to_prompt(text, understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
|
||||
if verbose > 1:
|
||||
print(f"Message -> Prompt: {text} -> {prompt}")
|
||||
|
||||
# Get Response from GPT
|
||||
response = openai.Completion.create(
|
||||
prompt=prompt, model=model, temperature=temperature, max_tokens=max_tokens, frequency_penalty=0.2, stop=["\n"]
|
||||
)
|
||||
|
||||
# Extract, Clean Message from GPT's Response
|
||||
story = str(response["choices"][0]["text"])
|
||||
return json.loads(story.strip(empty_escape_sequences))
|
||||
|
||||
|
||||
def converse(text, model, conversation_history=None, api_key=None, temperature=0.9, max_tokens=150):
|
||||
"""
|
||||
Converse with user using OpenAI's GPT
|
||||
"""
|
||||
# Initialize Variables
|
||||
max_words = 500
|
||||
model = "gpt-3.5-turbo"
|
||||
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
||||
|
||||
personality_primer = "You are a friendly, helpful personal assistant."
|
||||
conversation_primer = f"""
|
||||
The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and a very friendly companion.
|
||||
Using my notes below, answer the following question. If the answer is not contained within the notes, say "I don't know."
|
||||
|
||||
Human: Hello, who are you?
|
||||
AI: Hi, I am an AI conversational companion created by OpenAI. How can I help you today?"""
|
||||
Notes:
|
||||
{text}
|
||||
|
||||
Question: {user_query}"""
|
||||
|
||||
# Setup Prompt with Primer or Conversation History
|
||||
prompt = message_to_prompt(text, conversation_history or conversation_primer)
|
||||
prompt = " ".join(prompt.split()[:max_words])
|
||||
messages = generate_chatml_messages_with_context(
|
||||
conversation_primer,
|
||||
personality_primer,
|
||||
active_session_length,
|
||||
conversation_log,
|
||||
)
|
||||
|
||||
# Get Response from GPT
|
||||
response = openai.Completion.create(
|
||||
prompt=prompt,
|
||||
response = openai.ChatCompletion.create(
|
||||
messages=messages,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
presence_penalty=0.6,
|
||||
stop=["\n", "Human:", "AI:"],
|
||||
)
|
||||
|
||||
# Extract, Clean Message from GPT's Response
|
||||
story = str(response["choices"][0]["text"])
|
||||
story = str(response["choices"][0]["message"]["content"])
|
||||
return story.strip(empty_escape_sequences)
|
||||
|
||||
|
||||
def generate_chatml_messages_with_context(user_message, system_message, active_session_length=0, conversation_log=None):
|
||||
"""Generate messages for ChatGPT with context from previous conversation"""
|
||||
# Extract Chat History for Context
|
||||
chat_logs = [chat["message"] for chat in conversation_log.get("chat", [])]
|
||||
session_summaries = [session["summary"] for session in conversation_log.get("session", {})]
|
||||
if active_session_length == 0:
|
||||
last_backnforth = list(map(message_to_chatml, session_summaries[-1:]))
|
||||
rest_backnforth = list(map(message_to_chatml, session_summaries[-2:-1]))
|
||||
elif active_session_length == 1:
|
||||
last_backnforth = reciprocal_conversation_to_chatml(chat_logs[-2:])
|
||||
rest_backnforth = list(map(message_to_chatml, session_summaries[-1:]))
|
||||
else:
|
||||
last_backnforth = reciprocal_conversation_to_chatml(chat_logs[-2:])
|
||||
rest_backnforth = reciprocal_conversation_to_chatml(chat_logs[-4:-2])
|
||||
|
||||
# Format user and system messages to chatml format
|
||||
system_chatml_message = [message_to_chatml(system_message, "system")]
|
||||
user_chatml_message = [message_to_chatml(user_message, "user")]
|
||||
|
||||
return rest_backnforth + system_chatml_message + last_backnforth + user_chatml_message
|
||||
|
||||
|
||||
def reciprocal_conversation_to_chatml(message_pair):
|
||||
"""Convert a single back and forth between user and assistant to chatml format"""
|
||||
return [message_to_chatml(message, role) for message, role in zip(message_pair, ["user", "assistant"])]
|
||||
|
||||
|
||||
def message_to_chatml(message, role="assistant"):
|
||||
"""Create chatml message from message and role"""
|
||||
return {"role": role, "content": message}
|
||||
|
||||
|
||||
def message_to_prompt(
|
||||
user_message, conversation_history="", gpt_message=None, start_sequence="\nAI:", restart_sequence="\nHuman:"
|
||||
):
|
||||
|
|
|
@ -15,7 +15,6 @@ from khoj.processor.conversation.gpt import (
|
|||
extract_search_type,
|
||||
message_to_log,
|
||||
message_to_prompt,
|
||||
understand,
|
||||
summarize,
|
||||
)
|
||||
from khoj.utils.state import SearchType
|
||||
|
@ -84,12 +83,12 @@ def answer_beta(q: str):
|
|||
@api_beta.get("/chat")
|
||||
def chat(q: Optional[str] = None):
|
||||
# Initialize Variables
|
||||
model = state.processor_config.conversation.model
|
||||
api_key = state.processor_config.conversation.openai_api_key
|
||||
|
||||
# Load Conversation History
|
||||
chat_session = state.processor_config.conversation.chat_session
|
||||
meta_log = state.processor_config.conversation.meta_log
|
||||
active_session_length = len(chat_session.split("\nAI:")) - 1 if chat_session else 0
|
||||
|
||||
# If user query is empty, return chat history
|
||||
if not q:
|
||||
|
@ -98,33 +97,22 @@ def chat(q: Optional[str] = None):
|
|||
else:
|
||||
return {"status": "ok", "response": []}
|
||||
|
||||
# Converse with OpenAI GPT
|
||||
metadata = understand(q, model=model, api_key=api_key, verbose=state.verbose)
|
||||
logger.debug(f'Understood: {get_from_dict(metadata, "intent")}')
|
||||
# Collate context for GPT
|
||||
result_list = search(q, n=2, r=True)
|
||||
collated_result = "\n\n".join([f"# {item.additional['compiled']}" for item in result_list])
|
||||
logger.debug(f"Reference Context:\n{collated_result}")
|
||||
|
||||
if get_from_dict(metadata, "intent", "memory-type") == "notes":
|
||||
query = get_from_dict(metadata, "intent", "query")
|
||||
result_list = search(query, n=1, t=SearchType.Org, r=True)
|
||||
collated_result = "\n".join([item.entry for item in result_list])
|
||||
logger.debug(f"Semantically Similar Notes:\n{collated_result}")
|
||||
try:
|
||||
gpt_response = summarize(collated_result, summary_type="notes", user_query=q, model=model, api_key=api_key)
|
||||
status = "ok"
|
||||
except Exception as e:
|
||||
gpt_response = str(e)
|
||||
status = "error"
|
||||
else:
|
||||
try:
|
||||
gpt_response = converse(q, model, chat_session, api_key=api_key)
|
||||
status = "ok"
|
||||
except Exception as e:
|
||||
gpt_response = str(e)
|
||||
status = "error"
|
||||
try:
|
||||
gpt_response = converse(collated_result, q, active_session_length, meta_log, api_key=api_key)
|
||||
status = "ok"
|
||||
except Exception as e:
|
||||
gpt_response = str(e)
|
||||
status = "error"
|
||||
|
||||
# Update Conversation History
|
||||
state.processor_config.conversation.chat_session = message_to_prompt(q, chat_session, gpt_message=gpt_response)
|
||||
state.processor_config.conversation.meta_log["chat"] = message_to_log(
|
||||
q, gpt_response, metadata, meta_log.get("chat", [])
|
||||
q, gpt_response, conversation_log=meta_log.get("chat", [])
|
||||
)
|
||||
|
||||
return {"status": status, "response": gpt_response}
|
||||
|
|
Loading…
Reference in a new issue