mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Save Asymmetric Search Model to Disk
- Improve application load time - Remove dependence on internet to startup application and perform semantic search
This commit is contained in:
parent
2e53fbc844
commit
b63026d97c
5 changed files with 43 additions and 10 deletions
|
@ -27,6 +27,7 @@ search-type:
|
|||
asymmetric:
|
||||
encoder: "sentence-transformers/msmarco-MiniLM-L-6-v3"
|
||||
cross-encoder: "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||
model_directory: "tests/data/.asymmetric"
|
||||
|
||||
image:
|
||||
encoder: "clip-ViT-B-32"
|
||||
|
|
|
@ -130,12 +130,12 @@ def initialize_search(config: FullConfig, regenerate: bool, t: SearchType = None
|
|||
# Initialize Org Notes Search
|
||||
if (t == SearchType.Notes or t == None) and config.content_type.org:
|
||||
# Extract Entries, Generate Notes Embeddings
|
||||
model.notes_search = asymmetric.setup(config.content_type.org, regenerate=regenerate, verbose=verbose)
|
||||
model.notes_search = asymmetric.setup(config.content_type.org, search_config=config.search_type.asymmetric, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Org Music Search
|
||||
if (t == SearchType.Music or t == None) and config.content_type.music:
|
||||
# Extract Entries, Generate Music Embeddings
|
||||
model.music_search = asymmetric.setup(config.content_type.music, regenerate=regenerate, verbose=verbose)
|
||||
model.music_search = asymmetric.setup(config.content_type.music, search_config=config.search_type.asymmetric, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Ledger Search
|
||||
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
|
||||
|
|
|
@ -12,18 +12,31 @@ import torch
|
|||
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path, load_model
|
||||
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfig
|
||||
from src.utils.rawconfig import AsymmetricConfig, TextSearchConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
def initialize_model(search_config: AsymmetricConfig):
|
||||
"Initialize model for assymetric semantic search. That is, where query smaller than results"
|
||||
torch.set_num_threads(4)
|
||||
bi_encoder = SentenceTransformer('sentence-transformers/msmarco-MiniLM-L-6-v3') # The bi-encoder encodes all entries to use for semantic search
|
||||
top_k = 30 # Number of entries we want to retrieve with the bi-encoder
|
||||
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') # The cross-encoder re-ranks the results to improve quality
|
||||
|
||||
# Number of entries we want to retrieve with the bi-encoder
|
||||
top_k = 30
|
||||
|
||||
# The bi-encoder encodes all entries to use for semantic search
|
||||
bi_encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.encoder,
|
||||
model_type = SentenceTransformer)
|
||||
|
||||
# The cross-encoder re-ranks the results to improve quality
|
||||
cross_encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.cross_encoder,
|
||||
model_type = CrossEncoder)
|
||||
|
||||
return bi_encoder, cross_encoder, top_k
|
||||
|
||||
|
||||
|
@ -149,9 +162,9 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool=False) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfig, search_config: AsymmetricConfig, regenerate: bool, verbose: bool=False) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
bi_encoder, cross_encoder, top_k = initialize_model(search_config)
|
||||
|
||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# Standard Packages
|
||||
import pathlib
|
||||
from os.path import join
|
||||
|
||||
|
||||
def is_none_or_empty(item):
|
||||
|
@ -32,3 +34,19 @@ def merge_dicts(priority_dict, default_dict):
|
|||
if k not in priority_dict:
|
||||
merged_dict[k] = default_dict[k]
|
||||
return merged_dict
|
||||
|
||||
|
||||
def load_model(model_name, model_dir, model_type):
|
||||
"Load model from disk or huggingface"
|
||||
# Construct model path
|
||||
model_path = join(model_dir, model_name.replace("/", "_"))
|
||||
|
||||
# Load model from model_path if it exists there
|
||||
if resolve_absolute_path(model_path).exists():
|
||||
model = model_type(get_absolute_path(model_path))
|
||||
# Else load the model from the model_name
|
||||
else:
|
||||
model = model_type(model_name)
|
||||
model.save(model_path)
|
||||
|
||||
return model
|
|
@ -40,6 +40,7 @@ class ContentTypeConfig(ConfigBase):
|
|||
class AsymmetricConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
cross_encoder: Optional[str]
|
||||
model_directory: Optional[Path]
|
||||
|
||||
class ImageSearchTypeConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
|
|
Loading…
Reference in a new issue