Make filters to apply before semantic search configurable

Details
--
- The filters to apply are configured for each type in the search controller
- Muliple filters can be applied on the query, entries etc before search
- The asymmetric query method now just applies the passed filters to the
  query, entries and embeddings before semantic search is performed

Reason
--
This abstraction will simplify adding other pre-search filters. E.g datetime filter
This commit is contained in:
Debanjum Singh Solanky 2022-07-13 16:29:23 +04:00
parent c92789d20a
commit b82aef26bf
2 changed files with 7 additions and 5 deletions

View file

@ -17,6 +17,7 @@ from src.utils.cli import cli
from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel
from src.utils.rawconfig import FullConfig
from src.processor.conversation.gpt import converse, extract_search_type, message_to_log, message_to_prompt, understand, summarize
from src.search_filter.explicit_filter import explicit_filter
# Application Global State
config = FullConfig()
@ -58,14 +59,14 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
if (t == SearchType.Notes or t == None) and model.notes_search:
# query notes
hits, entries = asymmetric.query(user_query, model.notes_search, device=device)
hits, entries = asymmetric.query(user_query, model.notes_search, device=device, filters=[explicit_filter])
# collate and return results
return asymmetric.collate_results(hits, entries, results_count)
if (t == SearchType.Music or t == None) and model.music_search:
# query music library
hits, entries = asymmetric.query(user_query, model.music_search, device=device)
hits, entries = asymmetric.query(user_query, model.music_search, device=device, filters=[explicit_filter])
# collate and return results
return asymmetric.collate_results(hits, entries, results_count)

View file

@ -94,7 +94,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, d
return corpus_embeddings
def query(raw_query: str, model: TextSearchModel, device=torch.device('cpu')):
def query(raw_query: str, model: TextSearchModel, device=torch.device('cpu'), filters: list = []):
"Search all notes for entries that answer the query"
# Copy original embeddings, entries to filter them for query
@ -102,8 +102,9 @@ def query(raw_query: str, model: TextSearchModel, device=torch.device('cpu')):
corpus_embeddings = deepcopy(model.corpus_embeddings)
entries = deepcopy(model.entries)
# Filter to entries that contain all required_words and no blocked_words
query, entries, corpus_embeddings = explicit_filter(query, entries, corpus_embeddings)
# Filter query, entries and embeddings before semantic search
for filter in filters:
query, entries, corpus_embeddings = filter(query, entries, corpus_embeddings)
if entries is None or len(entries) == 0:
return {}