Reuse asymmetric.setup & input validation from asymmetric & org_to_jsonl

Create asymmetric.setup method to
  - initialize model
  - generate compressed jsonl
  - compute embeddings

put input_files, input_file_filter validation in org_to_jsonl for
reuse in main.py, asymmetic.py
This commit is contained in:
Debanjum Singh Solanky 2021-08-16 23:58:24 -07:00
parent 02a84df37a
commit c35c6fb0b3
3 changed files with 33 additions and 40 deletions

28
main.py
View file

@ -38,14 +38,8 @@ def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
@app.get('/regenerate')
def regenerate():
# Generate Compressed JSONL from Notes in Input Files
org_to_jsonl(args.input_files, args.input_filter, args.compressed_jsonl, args.verbose)
# Extract Entries from Compressed JSONL
extracted_entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose)
# Compute Embeddings from Extracted Entries
computed_embeddings = asymmetric.compute_embeddings(extracted_entries, bi_encoder, args.embeddings, regenerate=True, verbose=args.verbose)
# Extract Entries, Generate Embeddings
extracted_entries, computed_embeddings, _, _, _ = asymmetric.setup(args.input_files, args.input_filter, args.compressed_jsonl, args.embeddings, regenerate=True, verbose=args.verbose)
# Now Update State
# update state variables after regeneration complete
@ -69,23 +63,7 @@ if __name__ == '__main__':
parser.add_argument('--verbose', action='count', default=0, help="Show verbose conversion logs. Default: 0")
args = parser.parse_args()
# Input Validation
if is_none_or_empty(args.input_files) and is_none_or_empty(args.input_filter):
print("At least one of org-files or org-file-filter is required to be specified")
exit(1)
# Initialize Model
bi_encoder, cross_encoder, top_k = asymmetric.initialize_model()
# Map notes in Org-Mode files to (compressed) JSONL formatted file
if not args.compressed_jsonl.exists() or args.regenerate:
org_to_jsonl(args.input_files, args.input_filter, args.compressed_jsonl, args.verbose)
# Extract Entries
entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose)
# Compute or Load Embeddings
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, regenerate=args.regenerate, verbose=args.verbose)
entries, corpus_embeddings, bi_encoder, cross_encoder, top_k = asymmetric.setup(args.input_files, args.input_filter, args.compressed_jsonl, args.embeddings, args.regenerate, args.verbose)
# Start Application Server
uvicorn.run(app)

View file

@ -12,6 +12,11 @@ import gzip
# Define Functions
def org_to_jsonl(org_files, org_file_filter, output_file, verbose=0):
# Input Validation
if is_none_or_empty(org_files) and is_none_or_empty(org_file_filter):
print("At least one of org-files or org-file-filter is required to be specified")
exit(1)
# Get Org Files to Process
org_files = get_org_files(org_files, org_file_filter, verbose)
@ -132,10 +137,5 @@ if __name__ == '__main__':
parser.add_argument('--verbose', '-v', action='count', default=0, help="Show verbose conversion logs, Default: 0")
args = parser.parse_args()
# Input Validation
if is_none_or_empty(args.input_files) and is_none_or_empty(args.input_filter):
print("At least one of org-files or org-file-filter is required to be specified")
exit(1)
# Map notes in Org-Mode files to (compressed) JSONL formatted file
org_to_jsonl(args.input_files, args.input_filter, args.output_file, args.verbose)

View file

@ -11,6 +11,8 @@ import torch
import argparse
import pathlib
from utils.helpers import get_absolute_path
from processor.org_mode.org_to_jsonl import org_to_jsonl
def initialize_model():
"Initialize model for assymetric semantic search. That is, where query smaller than results"
@ -140,24 +142,37 @@ def collate_results(hits, entries, count=5):
in hits[0:count]]
def setup(input_files, input_filter, compressed_jsonl, embeddings, regenerate=False, verbose=False):
# Initialize Model
bi_encoder, cross_encoder, top_k = initialize_model()
# Map notes in Org-Mode files to (compressed) JSONL formatted file
if not compressed_jsonl.exists() or regenerate:
org_to_jsonl(input_files, input_filter, compressed_jsonl, verbose)
# Extract Entries
entries = extract_entries(compressed_jsonl, verbose)
# Compute or Load Embeddings
corpus_embeddings = compute_embeddings(entries, bi_encoder, embeddings, regenerate=regenerate, verbose=verbose)
return entries, corpus_embeddings, bi_encoder, cross_encoder, top_k
if __name__ == '__main__':
# Setup Argument Parser
parser = argparse.ArgumentParser(description="Map Org-Mode notes into (compressed) JSONL format")
parser.add_argument('--compressed-jsonl', '-j', required=True, type=pathlib.Path, help="Input file for compressed JSONL formatted notes to compute embeddings from")
parser.add_argument('--embeddings', '-e', required=True, type=pathlib.Path, help="File to save/load model embeddings to/from")
parser.add_argument('--input-files', '-i', nargs='*', help="List of org-mode files to process")
parser.add_argument('--input-filter', type=str, default=None, help="Regex filter for org-mode files to process")
parser.add_argument('--compressed-jsonl', '-j', type=pathlib.Path, default=pathlib.Path(".notes.jsonl.gz"), help="Compressed JSONL formatted notes file to compute embeddings from")
parser.add_argument('--embeddings', '-e', type=pathlib.Path, default=pathlib.Path(".notes_embeddings.pt"), help="File to save/load model embeddings to/from")
parser.add_argument('--regenerate', action='store_true', default=False, help="Regenerate embeddings from org-mode files. Default: false")
parser.add_argument('--results-count', '-n', default=5, type=int, help="Number of results to render. Default: 5")
parser.add_argument('--interactive', action='store_true', default=False, help="Interactive mode allows user to run queries on the model. Default: true")
parser.add_argument('--verbose', action='count', default=0, help="Show verbose conversion logs. Default: 0")
args = parser.parse_args()
# Initialize Model
bi_encoder, cross_encoder, top_k = initialize_model()
# Extract Entries
entries = extract_entries(args.compressed_jsonl, args.verbose)
# Compute or Load Embeddings
corpus_embeddings = compute_embeddings(entries, bi_encoder, args.embeddings, args.verbose)
entries, corpus_embeddings, bi_encoder, cross_encoder, top_k = setup(args.input_files, args.input_filter, args.compressed_jsonl, args.embeddings, args.regenerate, args.verbose)
# Run User Queries on Entries in Interactive Mode
while args.interactive: