Introduce search api endpoint that auto infers search type intent

- Introduce prompt for GPT to automatically extract user's search intent
- Expose new search api endpoint to use that to set SearchType being
  passed to search API
- Currently meant as an experimental API to gauge usefulness,
  extendability. Evaluating for phone or voice use-case
This commit is contained in:
Debanjum Singh Solanky 2022-02-27 21:01:33 -05:00
parent 8ef7917014
commit c78bf84eef
2 changed files with 63 additions and 1 deletions

View file

@ -15,7 +15,7 @@ from src.utils.helpers import get_absolute_path, get_from_dict
from src.utils.cli import cli
from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel
from src.utils.rawconfig import FullConfig
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand, summarize
from src.processor.conversation.gpt import converse, extract_search_type, message_to_log, message_to_prompt, understand, summarize
# Application Global State
config = FullConfig()
@ -96,6 +96,19 @@ def regenerate(t: Optional[SearchType] = None):
return {'status': 'ok', 'message': 'regeneration completed'}
@app.get('/beta/search')
def search_beta(q: str, n: Optional[int] = 1):
# Extract Search Type using GPT
metadata = extract_search_type(q, api_key=processor_config.conversation.openai_api_key, verbose=verbose)
search_type = get_from_dict(metadata, "search-type")
# Search
search_results = search(q, n=n, t=SearchType(search_type))
# Return response
return {'status': 'ok', 'result': search_results, 'type': search_type}
@app.get('/chat')
def chat(q: str):
# Load Conversation History

View file

@ -39,6 +39,55 @@ def summarize(text, summary_type, user_query=None, api_key=None, temperature=0.5
return str(story).replace("\n\n", "")
def extract_search_type(text, api_key=None, temperature=0.5, max_tokens=100, verbose=0):
"""
Extract search type from user query using OpenAI's GPT
"""
# Initialize Variables
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
understand_primer = '''
Objective: Extract search type from user query and return information as JSON
Allowed search types are listed below:
- search-type=["notes","ledger","image","music"]
Some examples are given below for reference:
Q:What fiction book was I reading last week about AI starship?
A:{ "search-type": "notes" }
Q:Play some calm classical music?
A:{ "search-type": "music" }
Q:How much did I spend at Subway for dinner last time?
A:{ "search-type": "ledger" }
Q:What was that popular Sri lankan song that Alex had mentioned?
A:{ "search-type": "music" }
Q:Can you recommend a movie to watch from my notes?
A:{ "search-type": "notes" }
Q: When did I buy Groceries last?
A:{ "search-type": "ledger" }
Q:When did I go surfing last?
A:{ "search-type": "notes" }'''
# Setup Prompt with Understand Primer
prompt = message_to_prompt(text, understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
if verbose > 1:
print(f"Message -> Prompt: {text} -> {prompt}")
# Get Response from GPT
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0.2,
presence_penalty=0,
stop=["\n"])
# Extract, Clean Message from GPT's Response
story = str(response['choices'][0]['text'])
return json.loads(story.strip(empty_escape_sequences))
def understand(text, api_key=None, temperature=0.5, max_tokens=100, verbose=0):
"""
Understand user input using OpenAI's GPT