mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-17 18:17:10 +00:00
Search for images similar to query image provided by the user
Example user passes path to an image in query. e.g ~/Pictures/photo.jpg The script should return images in images_embedding most similar to the query image
This commit is contained in:
parent
00d0065c5b
commit
ca0a22f4dd
1 changed files with 12 additions and 3 deletions
|
@ -48,8 +48,17 @@ def compute_embeddings(image_names, model, embeddings_file, verbose=False):
|
|||
return image_embeddings
|
||||
|
||||
|
||||
def search(query, image_embeddings, model, count=3):
|
||||
# First, we encode the query (which can either be an image or a text string)
|
||||
def search(query, image_embeddings, model, count=3, verbose=False):
|
||||
# Set query to image content if query is a filepath
|
||||
if pathlib.Path(query).expanduser().is_file():
|
||||
query_imagepath = pathlib.Path(query).expanduser().resolve(strict=True)
|
||||
query = copy.deepcopy(Image.open(query_imagepath))
|
||||
if verbose:
|
||||
print(f"Find Images similar to Image at {query_imagepath}")
|
||||
else:
|
||||
print(f"Find Images by Text: {query}")
|
||||
|
||||
# Now we encode the query (which can either be an image or a text string)
|
||||
query_embedding = model.encode([query], convert_to_tensor=True, show_progress_bar=False)
|
||||
|
||||
# Then, we use the util.semantic_search function, which computes the cosine-similarity
|
||||
|
@ -95,7 +104,7 @@ if __name__ == '__main__':
|
|||
exit(0)
|
||||
|
||||
# query notes
|
||||
hits = search(user_query, image_embeddings, model, args.results_count)
|
||||
hits = search(user_query, image_embeddings, model, args.results_count, args.verbose)
|
||||
|
||||
# render results
|
||||
render_results(hits, image_names, args.image_directory, count=args.results_count)
|
||||
|
|
Loading…
Reference in a new issue