mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Add GPT based conversation processor to understand intent and converse with user
- Allow conversing with user using GPT's contextually aware, generative capability - Extract metadata, user intent from user's messages using GPT's general understanding
This commit is contained in:
parent
6244ccc01a
commit
d4e1120b22
3 changed files with 135 additions and 1 deletions
|
@ -13,3 +13,4 @@ dependencies:
|
||||||
- pytest=6.*
|
- pytest=6.*
|
||||||
- pillow=8.*
|
- pillow=8.*
|
||||||
- torchvision=0.*
|
- torchvision=0.*
|
||||||
|
- openai=0.*
|
70
src/processor/conversation/gpt.py
Normal file
70
src/processor/conversation/gpt.py
Normal file
|
@ -0,0 +1,70 @@
|
||||||
|
# Standard Packages
|
||||||
|
import os
|
||||||
|
|
||||||
|
# External Packages
|
||||||
|
import openai
|
||||||
|
|
||||||
|
|
||||||
|
def understand(text, api_key=None, temperature=0.5, max_tokens=100):
|
||||||
|
"""
|
||||||
|
Understand user input using OpenAI's GPT
|
||||||
|
"""
|
||||||
|
# Initialize Variables
|
||||||
|
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
||||||
|
understand_primer="Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")"
|
||||||
|
|
||||||
|
# Setup Prompt with Understand Primer
|
||||||
|
prompt = message_to_prompt(text, understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
|
||||||
|
|
||||||
|
# Get Reponse from GPT
|
||||||
|
response = openai.Completion.create(
|
||||||
|
engine="davinci",
|
||||||
|
prompt=prompt,
|
||||||
|
temperature=temperature,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
top_p=1,
|
||||||
|
frequency_penalty=0.2,
|
||||||
|
presence_penalty=0,
|
||||||
|
stop=["\n"])
|
||||||
|
|
||||||
|
# Extract, Clean Message from GPT's Response
|
||||||
|
story = response['choices'][0]['text']
|
||||||
|
return str(story)
|
||||||
|
|
||||||
|
|
||||||
|
def converse(text, conversation_history=None, api_key=None, temperature=0.9, max_tokens=150):
|
||||||
|
"""
|
||||||
|
Converse with user using OpenAI's GPT
|
||||||
|
"""
|
||||||
|
# Initialize Variables
|
||||||
|
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
start_sequence = "\nAI:"
|
||||||
|
restart_sequence = "\nHuman:"
|
||||||
|
conversation_primer = f"The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly companion.\n{restart_sequence} Hello, who are you?{start_sequence} Hi, I am an AI conversational companion created by OpenAI. How can I help you today?"
|
||||||
|
|
||||||
|
# Setup Prompt with Primer or Conversation History
|
||||||
|
prompt = message_to_prompt(text, conversation_history or conversation_primer, start_sequence=start_sequence, restart_sequence=restart_sequence)
|
||||||
|
|
||||||
|
# Get Response from GPT
|
||||||
|
response = openai.Completion.create(
|
||||||
|
engine="davinci",
|
||||||
|
prompt=prompt,
|
||||||
|
temperature=temperature,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
top_p=1,
|
||||||
|
frequency_penalty=0,
|
||||||
|
presence_penalty=0.6,
|
||||||
|
stop=["\n", " Human:", " AI:"])
|
||||||
|
|
||||||
|
# Extract, Clean Message from GPT's Response
|
||||||
|
story = response['choices'][0]['text']
|
||||||
|
return str(story).strip()
|
||||||
|
|
||||||
|
|
||||||
|
def message_to_prompt(user_message, conversation_history="", gpt_message=None, start_sequence="\nAI:", restart_sequence="\nHuman:"):
|
||||||
|
"""Create prompt for GPT from message"""
|
||||||
|
if gpt_message:
|
||||||
|
return f"{conversation_history}{restart_sequence} {user_message}{start_sequence} {gpt_message}"
|
||||||
|
else:
|
||||||
|
return f"{conversation_history}{restart_sequence} {user_message}{start_sequence}"
|
63
tests/test_chatbot.py
Normal file
63
tests/test_chatbot.py
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
# External Packages
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
# Internal Packages
|
||||||
|
from src.processor.conversation.gpt import converse, understand, message_to_prompt
|
||||||
|
|
||||||
|
# Input your OpenAI API key to run the tests below
|
||||||
|
api_key = None
|
||||||
|
|
||||||
|
|
||||||
|
# Test
|
||||||
|
# ----------------------------------------------------------------------------------------------------
|
||||||
|
def test_message_to_understand_prompt():
|
||||||
|
# Setup
|
||||||
|
understand_primer = "Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")"
|
||||||
|
expected_response = "Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")\nQ: When did I last dine at Burger King?\nA:"
|
||||||
|
|
||||||
|
# Act
|
||||||
|
actual_response = message_to_prompt("When did I last dine at Burger King?", understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
|
||||||
|
|
||||||
|
# Assert
|
||||||
|
assert actual_response == expected_response
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------------------------------
|
||||||
|
@pytest.mark.skipif(api_key is None,
|
||||||
|
reason="Set api_key variable to your OpenAI API key from https://beta.openai.com/account/api-keys")
|
||||||
|
def test_minimal_chat_with_gpt():
|
||||||
|
# Act
|
||||||
|
response = converse("What will happen when the stars go out?", api_key=api_key)
|
||||||
|
|
||||||
|
# Assert
|
||||||
|
assert len(response) > 0
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------------------------------
|
||||||
|
@pytest.mark.skipif(api_key is None,
|
||||||
|
reason="Set api_key variable to your OpenAI API key from https://beta.openai.com/account/api-keys")
|
||||||
|
def test_chat_with_history():
|
||||||
|
# Act
|
||||||
|
start_sequence="\nAI:"
|
||||||
|
restart_sequence="\nHuman:"
|
||||||
|
|
||||||
|
conversation_primer = f"The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly companion.\n{restart_sequence} Hello, I am testatron. Who are you?{start_sequence} Hi, I am an AI conversational companion created by OpenAI. How can I help you today?"
|
||||||
|
conversation_history = conversation_primer
|
||||||
|
|
||||||
|
response = converse("Can you tell me my name?", conversation_history=conversation_history, api_key=api_key, temperature=0, max_tokens=50)
|
||||||
|
|
||||||
|
# Assert
|
||||||
|
assert len(response) > 0
|
||||||
|
assert "Testatron" in response or "testatron" in response
|
||||||
|
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------------------------------
|
||||||
|
@pytest.mark.skipif(api_key is None,
|
||||||
|
reason="Set api_key variable to your OpenAI API key from https://beta.openai.com/account/api-keys")
|
||||||
|
def test_understand_message_using_gpt():
|
||||||
|
# Act
|
||||||
|
response = understand("When did I last dine at Subway?", api_key=api_key)
|
||||||
|
|
||||||
|
# Assert
|
||||||
|
assert len(response) > 0
|
||||||
|
assert "remember(\"ledger\", " in response
|
Loading…
Reference in a new issue