Modularize Code. Wrap Search, Model Config in Classes. Add Tests

Details
  - Rename method query_* to query in search_types for standardization
  - Wrapping Config code in classes simplified mocking test config
  - Reduce args beings passed to a function by passing it as single
    argument wrapped in a class
  - Minimize setup in main.py:__main__. Put most of it into functions
    These functions can be mocked if required in tests later too

Setup Flow:
  CLI_Args|Config_YAML -> (Text|Image)SearchConfig -> (Text|Image)SearchModel
This commit is contained in:
Debanjum Singh Solanky 2021-09-30 02:04:04 -07:00
parent f4dd9cd117
commit d5597442f4
6 changed files with 201 additions and 154 deletions

View file

@ -11,12 +11,12 @@ from fastapi import FastAPI
from search_type import asymmetric, symmetric_ledger, image_search
from utils.helpers import get_from_dict
from utils.cli import cli
from utils.config import SearchType, SearchSettings, SearchModels
from utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig
# Application Global State
model = SearchModels()
search_settings = SearchSettings()
search_config = SearchConfig()
app = FastAPI()
@ -29,36 +29,36 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
user_query = q
results_count = n
if (t == SearchType.Notes or t == None) and search_settings.notes_search_enabled:
if (t == SearchType.Notes or t == None) and model.notes_search:
# query notes
hits = asymmetric.query_notes(user_query, model.notes_search)
hits = asymmetric.query(user_query, model.notes_search)
# collate and return results
return asymmetric.collate_results(hits, model.notes_search.entries, results_count)
if (t == SearchType.Music or t == None) and search_settings.music_search_enabled:
if (t == SearchType.Music or t == None) and model.music_search:
# query music library
hits = asymmetric.query_notes(user_query, model.music_search)
hits = asymmetric.query(user_query, model.music_search)
# collate and return results
return asymmetric.collate_results(hits, model.music_search.entries, results_count)
if (t == SearchType.Ledger or t == None) and search_settings.ledger_search_enabled:
if (t == SearchType.Ledger or t == None) and model.ledger_search:
# query transactions
hits = symmetric_ledger.query_transactions(user_query, model.ledger_search)
hits = symmetric_ledger.query(user_query, model.ledger_search)
# collate and return results
return symmetric_ledger.collate_results(hits, model.ledger_search.entries, results_count)
if (t == SearchType.Image or t == None) and search_settings.image_search_enabled:
if (t == SearchType.Image or t == None) and model.image_search:
# query transactions
hits = image_search.query_images(user_query, model.image_search, args.verbose)
hits = image_search.query(user_query, results_count, model.image_search)
# collate and return results
return image_search.collate_results(
hits,
model.image_search.image_names,
image_config['input-directory'],
search_config.image.input_directory,
results_count)
else:
@ -67,98 +67,58 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
@app.get('/regenerate')
def regenerate(t: Optional[SearchType] = None):
if (t == SearchType.Notes or t == None) and search_settings.notes_search_enabled:
if (t == SearchType.Notes or t == None) and search_config.notes:
# Extract Entries, Generate Embeddings
models.notes_search = asymmetric.setup(
org_config['input-files'],
org_config['input-filter'],
pathlib.Path(org_config['compressed-jsonl']),
pathlib.Path(org_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
model.notes_search = asymmetric.setup(search_config.notes, regenerate=True)
if (t == SearchType.Music or t == None) and search_settings.music_search_enabled:
if (t == SearchType.Music or t == None) and search_config.music:
# Extract Entries, Generate Song Embeddings
model.music_search = asymmetric.setup(
song_config['input-files'],
song_config['input-filter'],
pathlib.Path(song_config['compressed-jsonl']),
pathlib.Path(song_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
model.music_search = asymmetric.setup(search_config.music, regenerate=True)
if (t == SearchType.Ledger or t == None) and search_settings.ledger_search_enabled:
if (t == SearchType.Ledger or t == None) and search_config.ledger:
# Extract Entries, Generate Embeddings
model.ledger_search = symmetric_ledger.setup(
ledger_config['input-files'],
ledger_config['input-filter'],
pathlib.Path(ledger_config['compressed-jsonl']),
pathlib.Path(ledger_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=True)
if (t == SearchType.Image or t == None) and search_settings.image_search_enabled:
if (t == SearchType.Image or t == None) and search_config.image:
# Extract Images, Generate Embeddings
model.image_search = image_search.setup(
pathlib.Path(image_config['input-directory']),
pathlib.Path(image_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
model.image_search = image_search.setup(search_config.image, regenerate=True)
return {'status': 'ok', 'message': 'regeneration completed'}
if __name__ == '__main__':
args = cli(sys.argv[1:])
def initialize_search(config, regenerate, verbose):
model = SearchModels()
search_config = SearchConfig()
# Initialize Org Notes Search
org_config = get_from_dict(args.config, 'content-type', 'org')
if org_config and ('input-files' in org_config or 'input-filter' in org_config):
search_settings.notes_search_enabled = True
model.notes_search = asymmetric.setup(
org_config['input-files'],
org_config['input-filter'],
pathlib.Path(org_config['compressed-jsonl']),
pathlib.Path(org_config['embeddings-file']),
args.regenerate,
args.verbose)
search_config.notes = TextSearchConfig.create_from_dictionary(config, ('content-type', 'org'), verbose)
if search_config.notes:
model.notes_search = asymmetric.setup(search_config.notes, regenerate=regenerate)
# Initialize Org Music Search
song_config = get_from_dict(args.config, 'content-type', 'music')
music_search_enabled = False
if song_config and ('input-files' in song_config or 'input-filter' in song_config):
search_settings.music_search_enabled = True
model.music_search = asymmetric.setup(
song_config['input-files'],
song_config['input-filter'],
pathlib.Path(song_config['compressed-jsonl']),
pathlib.Path(song_config['embeddings-file']),
args.regenerate,
args.verbose)
search_config.music = TextSearchConfig.create_from_dictionary(config, ('content-type', 'music'), verbose)
if search_config.music:
model.music_search = asymmetric.setup(search_config.music, regenerate=regenerate)
# Initialize Ledger Search
ledger_config = get_from_dict(args.config, 'content-type', 'ledger')
if ledger_config and ('input-files' in ledger_config or 'input-filter' in ledger_config):
search_settings.ledger_search_enabled = True
model.ledger_search = symmetric_ledger.setup(
ledger_config['input-files'],
ledger_config['input-filter'],
pathlib.Path(ledger_config['compressed-jsonl']),
pathlib.Path(ledger_config['embeddings-file']),
args.regenerate,
args.verbose)
search_config.ledger = TextSearchConfig.create_from_dictionary(config, ('content-type', 'ledger'), verbose)
if search_config.ledger:
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=regenerate)
# Initialize Image Search
image_config = get_from_dict(args.config, 'content-type', 'image')
if image_config and 'input-directory' in image_config:
search_settings.image_search_enabled = True
model.image_search = image_search.setup(
pathlib.Path(image_config['input-directory']),
pathlib.Path(image_config['embeddings-file']),
batch_size=image_config['batch-size'],
regenerate=args.regenerate,
use_xmp_metadata={'yes': True, 'no': False}[image_config['use-xmp-metadata']],
verbose=args.verbose)
search_config.image = ImageSearchConfig.create_from_dictionary(config, ('content-type', 'image'), verbose)
if search_config.image:
model.image_search = image_search.setup(search_config.image, regenerate=regenerate)
return model, search_config
if __name__ == '__main__':
# Load config from CLI
args = cli(sys.argv[1:])
# Initialize Search from Config
model, search_config = initialize_search(args.config, args.regenerate, args.verbose)
# Start Application Server
uvicorn.run(app)

View file

@ -17,7 +17,7 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
# Internal Packages
from utils.helpers import get_absolute_path, resolve_absolute_path
from processor.org_mode.org_to_jsonl import org_to_jsonl
from utils.config import AsymmetricSearchModel
from utils.config import TextSearchModel, TextSearchConfig
def initialize_model():
@ -66,7 +66,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
return corpus_embeddings
def query_notes(raw_query: str, model: AsymmetricSearchModel):
def query(raw_query: str, model: TextSearchModel):
"Search all notes for entries that answer the query"
# Separate natural query from explicit required, blocked words filters
query = " ".join([word for word in raw_query.split() if not word.startswith("+") and not word.startswith("-")])
@ -151,21 +151,21 @@ def collate_results(hits, entries, count=5):
in hits[0:count]]
def setup(input_files, input_filter, compressed_jsonl, embeddings, regenerate=False, verbose=False):
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
# Initialize Model
bi_encoder, cross_encoder, top_k = initialize_model()
# Map notes in Org-Mode files to (compressed) JSONL formatted file
if not resolve_absolute_path(compressed_jsonl).exists() or regenerate:
org_to_jsonl(input_files, input_filter, compressed_jsonl, verbose)
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, config.verbose)
# Extract Entries
entries = extract_entries(compressed_jsonl, verbose)
entries = extract_entries(config.compressed_jsonl, config.verbose)
# Compute or Load Embeddings
corpus_embeddings = compute_embeddings(entries, bi_encoder, embeddings, regenerate=regenerate, verbose=verbose)
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
return AsymmetricSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k)
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
if __name__ == '__main__':
@ -191,7 +191,7 @@ if __name__ == '__main__':
exit(0)
# query notes
hits = query_notes(user_query, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
hits = query(user_query, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
# render results
render_results(hits, entries, count=args.results_count)

View file

@ -12,6 +12,8 @@ import torch
# Internal Packages
from utils.helpers import get_absolute_path, resolve_absolute_path
import utils.exiftool as exiftool
from utils.config import ImageSearchModel, ImageSearchConfig
def initialize_model():
# Initialize Model
@ -93,30 +95,31 @@ def extract_metadata(image_name, verbose=0):
return image_processed_metadata
def query_images(query, image_embeddings, image_metadata_embeddings, model, count=3, verbose=0):
def query(raw_query, count, model: ImageSearchModel):
# Set query to image content if query is a filepath
if pathlib.Path(query).is_file():
query_imagepath = resolve_absolute_path(pathlib.Path(query), strict=True)
if pathlib.Path(raw_query).is_file():
query_imagepath = resolve_absolute_path(pathlib.Path(raw_query), strict=True)
query = copy.deepcopy(Image.open(query_imagepath))
if verbose > 0:
if model.verbose > 0:
print(f"Find Images similar to Image at {query_imagepath}")
else:
if verbose > 0:
query = raw_query
if model.verbose > 0:
print(f"Find Images by Text: {query}")
# Now we encode the query (which can either be an image or a text string)
query_embedding = model.encode([query], convert_to_tensor=True, show_progress_bar=False)
query_embedding = model.image_encoder.encode([query], convert_to_tensor=True, show_progress_bar=False)
# Compute top_k ranked images based on cosine-similarity b/w query and all image embeddings.
image_hits = {result['corpus_id']: result['score']
for result
in util.semantic_search(query_embedding, image_embeddings, top_k=count)[0]}
in util.semantic_search(query_embedding, model.image_embeddings, top_k=count)[0]}
# Compute top_k ranked images based on cosine-similarity b/w query and all image metadata embeddings.
if image_metadata_embeddings:
if model.image_metadata_embeddings:
metadata_hits = {result['corpus_id']: result['score']
for result
in util.semantic_search(query_embedding, image_metadata_embeddings, top_k=count)[0]}
in util.semantic_search(query_embedding, model.image_metadata_embeddings, top_k=count)[0]}
# Sum metadata, image scores of the highest ranked images
for corpus_id, score in metadata_hits.items():
@ -150,20 +153,30 @@ def collate_results(hits, image_names, image_directory, count=5):
in hits[0:count]]
def setup(image_directory, embeddings_file, batch_size=50, regenerate=False, use_xmp_metadata=False, verbose=0):
def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
# Initialize Model
model = initialize_model()
# Extract Entries
image_directory = resolve_absolute_path(image_directory, strict=True)
image_names = extract_entries(image_directory, verbose)
image_directory = resolve_absolute_path(config.input_directory, strict=True)
image_names = extract_entries(config.input_directory, config.verbose)
# Compute or Load Embeddings
embeddings_file = resolve_absolute_path(embeddings_file)
image_embeddings, image_metadata_embeddings = compute_embeddings(image_names, model, embeddings_file,
batch_size=batch_size, regenerate=regenerate, use_xmp_metadata=use_xmp_metadata, verbose=verbose)
embeddings_file = resolve_absolute_path(config.embeddings_file)
image_embeddings, image_metadata_embeddings = compute_embeddings(
image_names,
model,
embeddings_file,
batch_size=config.batch_size,
regenerate=regenerate,
use_xmp_metadata=config.use_xmp_metadata,
verbose=config.verbose)
return image_names, image_embeddings, image_metadata_embeddings, model
return ImageSearchModel(image_names,
image_embeddings,
image_metadata_embeddings,
model,
config.verbose)
if __name__ == '__main__':
@ -187,7 +200,7 @@ if __name__ == '__main__':
exit(0)
# query images
hits = query_images(user_query, image_embeddings, image_metadata_embeddings, model, args.results_count, args.verbose)
hits = query(user_query, image_embeddings, image_metadata_embeddings, model, args.results_count, args.verbose)
# render results
render_results(hits, image_names, args.image_directory, count=args.results_count)

View file

@ -15,6 +15,7 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
# Internal Packages
from utils.helpers import get_absolute_path, resolve_absolute_path
from processor.ledger.beancount_to_jsonl import beancount_to_jsonl
from utils.config import TextSearchModel, TextSearchConfig
def initialize_model():
@ -59,7 +60,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
return corpus_embeddings
def query_transactions(raw_query, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k=100):
def query(raw_query, model: TextSearchModel):
"Search all notes for entries that answer the query"
# Separate natural query from explicit required, blocked words filters
query = " ".join([word for word in raw_query.split() if not word.startswith("+") and not word.startswith("-")])
@ -67,20 +68,20 @@ def query_transactions(raw_query, corpus_embeddings, entries, bi_encoder, cross_
blocked_words = set([word[1:].lower() for word in raw_query.split() if word.startswith("-")])
# Encode the query using the bi-encoder
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
question_embedding = model.bi_encoder.encode(query, convert_to_tensor=True)
# Find relevant entries for the query
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
hits = util.semantic_search(question_embedding, model.corpus_embeddings, top_k=model.top_k)
hits = hits[0] # Get the hits for the first query
# Filter results using explicit filters
hits = explicit_filter(hits, entries, required_words, blocked_words)
hits = explicit_filter(hits, model.entries, required_words, blocked_words)
if hits is None or len(hits) == 0:
return hits
# Score all retrieved entries using the cross-encoder
cross_inp = [[query, entries[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
cross_inp = [[query, model.entries[hit['corpus_id']]] for hit in hits]
cross_scores = model.cross_encoder.predict(cross_inp)
# Store cross-encoder scores in results dictionary for ranking
for idx in range(len(cross_scores)):
@ -142,21 +143,21 @@ def collate_results(hits, entries, count=5):
in hits[0:count]]
def setup(input_files, input_filter, compressed_jsonl, embeddings, regenerate=False, verbose=False):
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
# Initialize Model
bi_encoder, cross_encoder, top_k = initialize_model()
# Map notes in Org-Mode files to (compressed) JSONL formatted file
if not resolve_absolute_path(compressed_jsonl).exists() or regenerate:
beancount_to_jsonl(input_files, input_filter, compressed_jsonl, verbose)
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
beancount_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, config.verbose)
# Extract Entries
entries = extract_entries(compressed_jsonl, verbose)
entries = extract_entries(config.compressed_jsonl, config.verbose)
# Compute or Load Embeddings
corpus_embeddings = compute_embeddings(entries, bi_encoder, embeddings, regenerate=regenerate, verbose=verbose)
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
return entries, corpus_embeddings, bi_encoder, cross_encoder, top_k
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
if __name__ == '__main__':
@ -181,8 +182,8 @@ if __name__ == '__main__':
if user_query == "exit":
exit(0)
# query notes
hits = query_transactions(user_query, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
# query
hits = query(user_query, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
# render results
render_results(hits, entries, count=args.results_count)

View file

@ -6,8 +6,9 @@ import pytest
from fastapi.testclient import TestClient
# Internal Packages
from main import app, search_settings, model
from main import app, search_config, model
from search_type import asymmetric
from utils.config import SearchConfig, TextSearchConfig
# Arrange
@ -60,14 +61,17 @@ def test_regenerate_with_valid_search_type():
# ----------------------------------------------------------------------------------------------------
def test_notes_search():
# Arrange
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')]
input_filter = None
compressed_jsonl = Path('tests/data/.test.jsonl.gz')
embeddings = Path('tests/data/.test_embeddings.pt')
search_config = SearchConfig()
search_config.notes = TextSearchConfig(
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')],
input_filter = None,
compressed_jsonl = Path('tests/data/.test.jsonl.gz'),
embeddings_file = Path('tests/data/.test_embeddings.pt'),
verbose = 0)
# Act
# Regenerate embeddings during asymmetric setup
notes_model = asymmetric.setup(input_files, input_filter, compressed_jsonl, embeddings, regenerate=True, verbose=0)
notes_model = asymmetric.setup(search_config.notes, regenerate=True)
# Assert
assert len(notes_model.entries) == 10
@ -75,7 +79,6 @@ def test_notes_search():
# Arrange
model.notes_search = notes_model
search_settings.notes_search_enabled = True
user_query = "How to call semantic search from Emacs?"
# Act
@ -88,3 +91,30 @@ def test_notes_search():
assert "Semantic Search via Emacs" in search_result
# ----------------------------------------------------------------------------------------------------
def test_notes_regenerate():
# Arrange
search_config = SearchConfig()
search_config.notes = TextSearchConfig(
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')],
input_filter = None,
compressed_jsonl = Path('tests/data/.test.jsonl.gz'),
embeddings_file = Path('tests/data/.test_embeddings.pt'),
verbose = 0)
# Act
# Regenerate embeddings during asymmetric setup
notes_model = asymmetric.setup(search_config.notes, regenerate=True)
# Assert
assert len(notes_model.entries) == 10
assert len(notes_model.corpus_embeddings) == 10
# Arrange
model.notes_search = notes_model
# Act
response = client.get(f"/regenerate?t=notes")
# Assert
assert response.status_code == 200

View file

@ -1,6 +1,10 @@
# System Packages
from enum import Enum
from dataclasses import dataclass
from pathlib import Path
# Internal Packages
from utils.helpers import get_from_dict
class SearchType(str, Enum):
@ -10,43 +14,82 @@ class SearchType(str, Enum):
Image = "image"
@dataclass
class SearchSettings():
notes_search_enabled: bool = False
ledger_search_enabled: bool = False
music_search_enabled: bool = False
image_search_enabled: bool = False
class AsymmetricSearchModel():
def __init__(self, entries, corpus_embeddings, bi_encoder, cross_encoder, top_k):
class TextSearchModel():
def __init__(self, entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose):
self.entries = entries
self.corpus_embeddings = corpus_embeddings
self.bi_encoder = bi_encoder
self.cross_encoder = cross_encoder
self.top_k = top_k
class LedgerSearchModel():
def __init__(self, transactions, transaction_embeddings, symmetric_encoder, symmetric_cross_encoder, top_k):
self.transactions = transactions
self.transaction_embeddings = transaction_embeddings
self.symmetric_encoder = symmetric_encoder
self.symmetric_cross_encoder = symmetric_cross_encoder
self.top_k = top_k
self.verbose = verbose
class ImageSearchModel():
def __init__(self, image_names, image_embeddings, image_metadata_embeddings, image_encoder):
def __init__(self, image_names, image_embeddings, image_metadata_embeddings, image_encoder, verbose):
self.image_encoder = image_encoder
self.image_names = image_names
self.image_embeddings = image_embeddings
self.image_metadata_embeddings = image_metadata_embeddings
self.image_encoder = image_encoder
self.verbose = verbose
@dataclass
class SearchModels():
notes_search: AsymmetricSearchModel = None
ledger_search: LedgerSearchModel = None
music_search: AsymmetricSearchModel = None
notes_search: TextSearchModel = None
ledger_search: TextSearchModel = None
music_search: TextSearchModel = None
image_search: ImageSearchModel = None
class TextSearchConfig():
def __init__(self, input_files, input_filter, compressed_jsonl, embeddings_file, verbose):
self.input_files = input_files
self.input_filter = input_filter
self.compressed_jsonl = Path(compressed_jsonl)
self.embeddings_file = Path(embeddings_file)
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
text_config = get_from_dict(config, *key_tree)
search_enabled = text_config and ('input-files' in text_config or 'input-filter' in text_config)
if not search_enabled:
return None
return TextSearchConfig(
input_files = text_config['input-files'],
input_filter = text_config['input-filter'],
compressed_jsonl = Path(text_config['compressed-jsonl']),
embeddings_file = Path(text_config['embeddings-file']),
verbose = verbose)
class ImageSearchConfig():
def __init__(self, input_directory, embeddings_file, batch_size, use_xmp_metadata, verbose):
self.input_directory = input_directory
self.embeddings_file = Path(embeddings_file)
self.batch_size = batch_size
self.use_xmp_metadata = use_xmp_metadata
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
image_config = get_from_dict(config, *key_tree)
search_enabled = image_config and 'input-directory' in image_config
if not search_enabled:
return None
return ImageSearchConfig(
input_directory = Path(image_config['input-directory']),
embeddings_file = Path(image_config['embeddings-file']),
batch_size = image_config['batch-size'],
use_xmp_metadata = {'yes': True, 'no': False}[image_config['use-xmp-metadata']],
verbose = verbose)
@dataclass
class SearchConfig():
notes: TextSearchConfig = None
ledger: TextSearchConfig = None
music: TextSearchConfig = None
image: ImageSearchConfig = None