Create API interface for Semantic Search

Use FastAPI, Uvicorn to create app with API endpoint at /search
Example Query: http://localhost:8000/?q="why sleep?"&t="notes'&n=5
This commit is contained in:
Debanjum Singh Solanky 2021-08-15 17:50:08 -07:00
parent e3088c8cf8
commit d75df54385
3 changed files with 75 additions and 0 deletions

View file

@ -130,6 +130,16 @@ def render_results(hits, entries, count=5, display_biencoder_results=False):
print(f"CrossScore: {hit['cross-score']:.3f}\n-----------------\n{entries[hit['corpus_id']]}")
def collate_results(hits, entries, count=5, verbose=False):
return [
{
"Entry": entries[hit['corpus_id']],
"Score": f"{hit['cross-score']:.3f}"
}
for hit
in hits[0:count]]
if __name__ == '__main__':
# Setup Argument Parser
parser = argparse.ArgumentParser(description="Map Org-Mode notes into JSONL format")

View file

@ -7,3 +7,5 @@ dependencies:
- pytorch
- transformers
- sentence-transformers
- fastapi
- uvicorn

63
main.py Normal file
View file

@ -0,0 +1,63 @@
from typing import Optional
from fastapi import FastAPI
from asymmetric import *
import uvicorn
app = FastAPI()
def create_search_notes(corpus_embeddings, entries, bi_encoder, cross_encoder, top_k):
"Closure to create search_notes method from initialized model, entries and embeddings"
def search_notes(query):
return query_notes(
query,
corpus_embeddings,
entries,
bi_encoder,
cross_encoder,
top_k)
return search_notes
@app.get('/search')
def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
if q is None or q == '':
print(f'No query param (q) passed in API call to initiate search')
return {}
user_query = q
results_count = n
if t == 'notes':
# query notes
hits = search_notes(user_query)
# collate and return results
return collate_results(hits, entries, results_count)
else:
return {}
if __name__ == '__main__':
# Setup Argument Parser
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
parser.add_argument('--jsonl-file', '-j', required=True, type=pathlib.Path, help="Input file for compressed JSONL formatted notes to compute embeddings from")
parser.add_argument('--embeddings-file', '-e', type=pathlib.Path, help="File to save/load model embeddings to/from. Default: ./embeddings.pt")
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
args = parser.parse_args()
# Initialize Model
bi_encoder, cross_encoder, top_k = initialize_model()
# Extract Entries
entries = extract_entries(args.jsonl_file, args.verbose)
# Compute or Load Embeddings
corpus_embeddings = compute_embeddings(entries, bi_encoder, args.embeddings_file, args.verbose)
# Generate search_notes method from initialized model, entries and embeddings
search_notes = create_search_notes(corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
# Start Application Server
uvicorn.run(app)