mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Create API interface for Semantic Search
Use FastAPI, Uvicorn to create app with API endpoint at /search Example Query: http://localhost:8000/?q="why sleep?"&t="notes'&n=5
This commit is contained in:
parent
e3088c8cf8
commit
d75df54385
3 changed files with 75 additions and 0 deletions
|
@ -130,6 +130,16 @@ def render_results(hits, entries, count=5, display_biencoder_results=False):
|
|||
print(f"CrossScore: {hit['cross-score']:.3f}\n-----------------\n{entries[hit['corpus_id']]}")
|
||||
|
||||
|
||||
def collate_results(hits, entries, count=5, verbose=False):
|
||||
return [
|
||||
{
|
||||
"Entry": entries[hit['corpus_id']],
|
||||
"Score": f"{hit['cross-score']:.3f}"
|
||||
}
|
||||
for hit
|
||||
in hits[0:count]]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Setup Argument Parser
|
||||
parser = argparse.ArgumentParser(description="Map Org-Mode notes into JSONL format")
|
||||
|
|
|
@ -7,3 +7,5 @@ dependencies:
|
|||
- pytorch
|
||||
- transformers
|
||||
- sentence-transformers
|
||||
- fastapi
|
||||
- uvicorn
|
63
main.py
Normal file
63
main.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
from typing import Optional
|
||||
from fastapi import FastAPI
|
||||
from asymmetric import *
|
||||
import uvicorn
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
def create_search_notes(corpus_embeddings, entries, bi_encoder, cross_encoder, top_k):
|
||||
"Closure to create search_notes method from initialized model, entries and embeddings"
|
||||
def search_notes(query):
|
||||
return query_notes(
|
||||
query,
|
||||
corpus_embeddings,
|
||||
entries,
|
||||
bi_encoder,
|
||||
cross_encoder,
|
||||
top_k)
|
||||
|
||||
return search_notes
|
||||
|
||||
|
||||
@app.get('/search')
|
||||
def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
|
||||
if q is None or q == '':
|
||||
print(f'No query param (q) passed in API call to initiate search')
|
||||
return {}
|
||||
|
||||
user_query = q
|
||||
results_count = n
|
||||
|
||||
if t == 'notes':
|
||||
# query notes
|
||||
hits = search_notes(user_query)
|
||||
|
||||
# collate and return results
|
||||
return collate_results(hits, entries, results_count)
|
||||
|
||||
else:
|
||||
return {}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Setup Argument Parser
|
||||
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
|
||||
parser.add_argument('--jsonl-file', '-j', required=True, type=pathlib.Path, help="Input file for compressed JSONL formatted notes to compute embeddings from")
|
||||
parser.add_argument('--embeddings-file', '-e', type=pathlib.Path, help="File to save/load model embeddings to/from. Default: ./embeddings.pt")
|
||||
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
|
||||
# Extract Entries
|
||||
entries = extract_entries(args.jsonl_file, args.verbose)
|
||||
|
||||
# Compute or Load Embeddings
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, args.embeddings_file, args.verbose)
|
||||
|
||||
# Generate search_notes method from initialized model, entries and embeddings
|
||||
search_notes = create_search_notes(corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
|
||||
|
||||
# Start Application Server
|
||||
uvicorn.run(app)
|
Loading…
Reference in a new issue