mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-11 16:23:02 +01:00
Use XMP metadata in images to improve image search
- Details - The CLIP model can represent images, text in the same vector space - Enhance CLIP's image understanding by augmenting the plain image with it's text based metadata. Specifically with any subject, description XMP tags on the image - Improve results by combining plain image similarity score with metadata similarity scores for the highest ranked images - Minor Fixes - Convert verbose to integer from bool in image_search. It's already passed as integer from the main program entrypoint - Process images with ".jpeg" extensions too
This commit is contained in:
parent
0e34c8f493
commit
d8abbc0552
3 changed files with 405 additions and 33 deletions
|
@ -68,6 +68,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[str] = None):
|
|||
hits = image_search.query_images(
|
||||
user_query,
|
||||
image_embeddings,
|
||||
image_metadata_embeddings,
|
||||
image_encoder,
|
||||
results_count,
|
||||
args.verbose)
|
||||
|
@ -124,8 +125,10 @@ def regenerate(t: Optional[str] = None):
|
|||
if (t == 'image' or t == None) and image_search_enabled:
|
||||
# Extract Images, Generate Embeddings
|
||||
global image_embeddings
|
||||
global image_metadata_embeddings
|
||||
global image_names
|
||||
image_names, image_embeddings, _ = image_search.setup(
|
||||
|
||||
image_names, image_embeddings, image_metadata_embeddings, _ = image_search.setup(
|
||||
pathlib.Path(image_config['input-directory']),
|
||||
pathlib.Path(image_config['embeddings-file']),
|
||||
regenerate=True,
|
||||
|
@ -181,7 +184,7 @@ if __name__ == '__main__':
|
|||
image_search_enabled = False
|
||||
if image_config and 'input-directory' in image_config:
|
||||
image_search_enabled = True
|
||||
image_names, image_embeddings, image_encoder = image_search.setup(
|
||||
image_names, image_embeddings, image_metadata_embeddings, image_encoder = image_search.setup(
|
||||
pathlib.Path(image_config['input-directory']),
|
||||
pathlib.Path(image_config['embeddings-file']),
|
||||
args.regenerate,
|
||||
|
|
|
@ -10,7 +10,7 @@ import torch
|
|||
|
||||
# Internal Packages
|
||||
from utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
|
||||
import utils.exiftool as exiftool
|
||||
|
||||
def initialize_model():
|
||||
# Initialize Model
|
||||
|
@ -19,59 +19,103 @@ def initialize_model():
|
|||
return model
|
||||
|
||||
|
||||
def extract_entries(image_directory, verbose=False):
|
||||
def extract_entries(image_directory, verbose=0):
|
||||
image_directory = resolve_absolute_path(image_directory, strict=True)
|
||||
image_names = list(image_directory.glob('*.jpg'))
|
||||
if verbose:
|
||||
image_names.extend(list(image_directory.glob('*.jpeg')))
|
||||
|
||||
if verbose > 0:
|
||||
print(f'Found {len(image_names)} images in {image_directory}')
|
||||
return image_names
|
||||
|
||||
|
||||
def compute_embeddings(image_names, model, embeddings_file, regenerate=False, verbose=False):
|
||||
def compute_embeddings(image_names, model, embeddings_file, regenerate=False, verbose=0):
|
||||
"Compute (and Save) Embeddings or Load Pre-Computed Embeddings"
|
||||
image_embeddings = None
|
||||
image_metadata_embeddings = None
|
||||
|
||||
# Load pre-computed embeddings from file if exists
|
||||
# Load pre-computed image embeddings from file if exists
|
||||
if resolve_absolute_path(embeddings_file).exists() and not regenerate:
|
||||
image_embeddings = torch.load(embeddings_file)
|
||||
if verbose:
|
||||
if verbose > 0:
|
||||
print(f"Loaded pre-computed embeddings from {embeddings_file}")
|
||||
|
||||
else: # Else compute the image_embeddings from scratch, which can take a while
|
||||
images = []
|
||||
if verbose:
|
||||
# load pre-computed image metadata embedding file if exists
|
||||
if resolve_absolute_path(f"{embeddings_file}_metadata").exists() and not regenerate:
|
||||
image_metadata_embeddings = torch.load(f"{embeddings_file}_metadata")
|
||||
if verbose > 0:
|
||||
print(f"Loaded pre-computed embeddings from {embeddings_file}_metadata")
|
||||
|
||||
if image_embeddings is None or image_metadata_embeddings is None: # Else compute the image_embeddings from scratch, which can take a while
|
||||
if verbose > 0:
|
||||
print(f"Loading the {len(image_names)} images into memory")
|
||||
for image_name in image_names:
|
||||
images.append(copy.deepcopy(Image.open(image_name)))
|
||||
|
||||
if len(images) > 0:
|
||||
image_embeddings = model.encode(images, batch_size=128, convert_to_tensor=True, show_progress_bar=True)
|
||||
torch.save(image_embeddings, embeddings_file)
|
||||
if verbose:
|
||||
print(f"Saved computed embeddings to {embeddings_file}")
|
||||
if image_embeddings is None:
|
||||
image_embeddings = model.encode(
|
||||
[Image.open(image_name).copy() for image_name in image_names],
|
||||
batch_size=128, convert_to_tensor=True, show_progress_bar=verbose > 0)
|
||||
|
||||
return image_embeddings
|
||||
torch.save(image_embeddings, embeddings_file)
|
||||
|
||||
if verbose > 0:
|
||||
print(f"Saved computed embeddings to {embeddings_file}")
|
||||
|
||||
if image_metadata_embeddings is None:
|
||||
image_metadata_embeddings = model.encode(
|
||||
[extract_metadata(image_name, verbose) for image_name in image_names],
|
||||
batch_size=128, convert_to_tensor=True, show_progress_bar=verbose > 0)
|
||||
|
||||
torch.save(image_metadata_embeddings, f"{embeddings_file}_metadata")
|
||||
|
||||
if verbose > 0:
|
||||
print(f"Saved computed metadata embeddings to {embeddings_file}_metadata")
|
||||
|
||||
return image_embeddings, image_metadata_embeddings
|
||||
|
||||
|
||||
def query_images(query, image_embeddings, model, count=3, verbose=False):
|
||||
def extract_metadata(image_name, verbose=0):
|
||||
with exiftool.ExifTool() as et:
|
||||
image_metadata = et.get_tags(["XMP:Subject", "XMP:Description"], str(image_name))
|
||||
image_metadata_subjects = set([subject.split(":")[1] for subject in image_metadata.get("XMP:Subject", "") if ":" in subject])
|
||||
image_processed_metadata = image_metadata.get("XMP:Description", "") + ". " + ", ".join(image_metadata_subjects)
|
||||
if verbose > 1:
|
||||
print(f"{image_name}:\t{image_processed_metadata}")
|
||||
return image_processed_metadata
|
||||
|
||||
|
||||
def query_images(query, image_embeddings, image_metadata_embeddings, model, count=3, verbose=0):
|
||||
# Set query to image content if query is a filepath
|
||||
if pathlib.Path(query).is_file():
|
||||
query_imagepath = resolve_absolute_path(pathlib.Path(query), strict=True)
|
||||
query = copy.deepcopy(Image.open(query_imagepath))
|
||||
if verbose:
|
||||
if verbose > 0:
|
||||
print(f"Find Images similar to Image at {query_imagepath}")
|
||||
else:
|
||||
print(f"Find Images by Text: {query}")
|
||||
if verbose > 0:
|
||||
print(f"Find Images by Text: {query}")
|
||||
|
||||
# Now we encode the query (which can either be an image or a text string)
|
||||
query_embedding = model.encode([query], convert_to_tensor=True, show_progress_bar=False)
|
||||
|
||||
# Then, we use the util.semantic_search function, which computes the cosine-similarity
|
||||
# between the query embedding and all image embeddings.
|
||||
# It then returns the top_k highest ranked images, which we output
|
||||
hits = util.semantic_search(query_embedding, image_embeddings, top_k=count)[0]
|
||||
# Compute top_k ranked images based on cosine-similarity b/w query and all image embeddings.
|
||||
image_hits = {result['corpus_id']: result['score']
|
||||
for result
|
||||
in util.semantic_search(query_embedding, image_embeddings, top_k=count)[0]}
|
||||
|
||||
return hits
|
||||
# Compute top_k ranked images based on cosine-similarity b/w query and all image metadata embeddings.
|
||||
metadata_hits = {result['corpus_id']: result['score']
|
||||
for result
|
||||
in util.semantic_search(query_embedding, image_metadata_embeddings, top_k=count)[0]}
|
||||
|
||||
# Sum metadata, image scores of the highest ranked images
|
||||
for corpus_id, score in metadata_hits.items():
|
||||
image_hits[corpus_id] = image_hits.get(corpus_id, 0) + score
|
||||
|
||||
# Reformat results in original form from sentence transformer semantic_search()
|
||||
hits = [{'corpus_id': corpus_id, 'score': score} for corpus_id, score in image_hits.items()]
|
||||
|
||||
# Sort the images based on their combined metadata, image scores
|
||||
return sorted(hits, key=lambda hit: hit["score"], reverse=True)
|
||||
|
||||
|
||||
def render_results(hits, image_names, image_directory, count):
|
||||
|
@ -95,7 +139,7 @@ def collate_results(hits, image_names, image_directory, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(image_directory, embeddings_file, regenerate=False, verbose=False):
|
||||
def setup(image_directory, embeddings_file, regenerate=False, verbose=0):
|
||||
# Initialize Model
|
||||
model = initialize_model()
|
||||
|
||||
|
@ -105,9 +149,9 @@ def setup(image_directory, embeddings_file, regenerate=False, verbose=False):
|
|||
|
||||
# Compute or Load Embeddings
|
||||
embeddings_file = resolve_absolute_path(embeddings_file)
|
||||
image_embeddings = compute_embeddings(image_names, model, embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||
image_embeddings, image_metadata_embeddings = compute_embeddings(image_names, model, embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return image_names, image_embeddings, model
|
||||
return image_names, image_embeddings, image_metadata_embeddings, model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -118,10 +162,10 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--regenerate', action='store_true', default=False, help="Regenerate embeddings of Images in Image Directory . Default: false")
|
||||
parser.add_argument('--results-count', '-n', default=5, type=int, help="Number of results to render. Default: 5")
|
||||
parser.add_argument('--interactive', action='store_true', default=False, help="Interactive mode allows user to run queries on the model. Default: true")
|
||||
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
|
||||
parser.add_argument('--verbose', action='count', default=0, help="Show verbose conversion logs. Default: 0")
|
||||
args = parser.parse_args()
|
||||
|
||||
image_names, image_embeddings, model = setup(args.image_directory, args.embeddings_file, regenerate=args.regenerate)
|
||||
image_names, image_embeddings, image_metadata_embeddings, model = setup(args.image_directory, args.embeddings_file, regenerate=args.regenerate)
|
||||
|
||||
# Run User Queries on Entries in Interactive Mode
|
||||
while args.interactive:
|
||||
|
@ -131,7 +175,7 @@ if __name__ == '__main__':
|
|||
exit(0)
|
||||
|
||||
# query images
|
||||
hits = query_images(user_query, image_embeddings, model, args.results_count, args.verbose)
|
||||
hits = query_images(user_query, image_embeddings, image_metadata_embeddings, model, args.results_count, args.verbose)
|
||||
|
||||
# render results
|
||||
render_results(hits, image_names, args.image_directory, count=args.results_count)
|
||||
|
|
325
src/utils/exiftool.py
Normal file
325
src/utils/exiftool.py
Normal file
|
@ -0,0 +1,325 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
# PyExifTool <http://github.com/smarnach/pyexiftool>
|
||||
# Copyright 2012 Sven Marnach
|
||||
|
||||
# This file is part of PyExifTool.
|
||||
#
|
||||
# PyExifTool is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the licence, or
|
||||
# (at your option) any later version, or the BSD licence.
|
||||
#
|
||||
# PyExifTool is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
#
|
||||
# See COPYING.GPL or COPYING.BSD for more details.
|
||||
|
||||
"""
|
||||
PyExifTool is a Python library to communicate with an instance of Phil
|
||||
Harvey's excellent ExifTool_ command-line application. The library
|
||||
provides the class :py:class:`ExifTool` that runs the command-line
|
||||
tool in batch mode and features methods to send commands to that
|
||||
program, including methods to extract meta-information from one or
|
||||
more image files. Since ``exiftool`` is run in batch mode, only a
|
||||
single instance needs to be launched and can be reused for many
|
||||
queries. This is much more efficient than launching a separate
|
||||
process for every single query.
|
||||
|
||||
.. _ExifTool: http://www.sno.phy.queensu.ca/~phil/exiftool/
|
||||
|
||||
The source code can be checked out from the github repository with
|
||||
|
||||
::
|
||||
|
||||
git clone git://github.com/smarnach/pyexiftool.git
|
||||
|
||||
Alternatively, you can download a tarball_. There haven't been any
|
||||
releases yet.
|
||||
|
||||
.. _tarball: https://github.com/smarnach/pyexiftool/tarball/master
|
||||
|
||||
PyExifTool is licenced under GNU GPL version 3 or later.
|
||||
|
||||
Example usage::
|
||||
|
||||
import exiftool
|
||||
|
||||
files = ["a.jpg", "b.png", "c.tif"]
|
||||
with exiftool.ExifTool() as et:
|
||||
metadata = et.get_metadata_batch(files)
|
||||
for d in metadata:
|
||||
print("{:20.20} {:20.20}".format(d["SourceFile"],
|
||||
d["EXIF:DateTimeOriginal"]))
|
||||
"""
|
||||
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import sys
|
||||
import subprocess
|
||||
import os
|
||||
import json
|
||||
import warnings
|
||||
import codecs
|
||||
|
||||
try: # Py3k compatibility
|
||||
basestring
|
||||
except NameError:
|
||||
basestring = (bytes, str)
|
||||
|
||||
executable = "exiftool"
|
||||
"""The name of the executable to run.
|
||||
|
||||
If the executable is not located in one of the paths listed in the
|
||||
``PATH`` environment variable, the full path should be given here.
|
||||
"""
|
||||
|
||||
# Sentinel indicating the end of the output of a sequence of commands.
|
||||
# The standard value should be fine.
|
||||
sentinel = b"{ready}"
|
||||
|
||||
# The block size when reading from exiftool. The standard value
|
||||
# should be fine, though other values might give better performance in
|
||||
# some cases.
|
||||
block_size = 4096
|
||||
|
||||
# This code has been adapted from Lib/os.py in the Python source tree
|
||||
# (sha1 265e36e277f3)
|
||||
def _fscodec():
|
||||
encoding = sys.getfilesystemencoding()
|
||||
errors = "strict"
|
||||
if encoding != "mbcs":
|
||||
try:
|
||||
codecs.lookup_error("surrogateescape")
|
||||
except LookupError:
|
||||
pass
|
||||
else:
|
||||
errors = "surrogateescape"
|
||||
|
||||
def fsencode(filename):
|
||||
"""
|
||||
Encode filename to the filesystem encoding with 'surrogateescape' error
|
||||
handler, return bytes unchanged. On Windows, use 'strict' error handler if
|
||||
the file system encoding is 'mbcs' (which is the default encoding).
|
||||
"""
|
||||
if isinstance(filename, bytes):
|
||||
return filename
|
||||
else:
|
||||
return filename.encode(encoding, errors)
|
||||
|
||||
return fsencode
|
||||
|
||||
fsencode = _fscodec()
|
||||
del _fscodec
|
||||
|
||||
class ExifTool(object):
|
||||
"""Run the `exiftool` command-line tool and communicate to it.
|
||||
|
||||
You can pass the file name of the ``exiftool`` executable as an
|
||||
argument to the constructor. The default value ``exiftool`` will
|
||||
only work if the executable is in your ``PATH``.
|
||||
|
||||
Most methods of this class are only available after calling
|
||||
:py:meth:`start()`, which will actually launch the subprocess. To
|
||||
avoid leaving the subprocess running, make sure to call
|
||||
:py:meth:`terminate()` method when finished using the instance.
|
||||
This method will also be implicitly called when the instance is
|
||||
garbage collected, but there are circumstance when this won't ever
|
||||
happen, so you should not rely on the implicit process
|
||||
termination. Subprocesses won't be automatically terminated if
|
||||
the parent process exits, so a leaked subprocess will stay around
|
||||
until manually killed.
|
||||
|
||||
A convenient way to make sure that the subprocess is terminated is
|
||||
to use the :py:class:`ExifTool` instance as a context manager::
|
||||
|
||||
with ExifTool() as et:
|
||||
...
|
||||
|
||||
.. warning:: Note that there is no error handling. Nonsensical
|
||||
options will be silently ignored by exiftool, so there's not
|
||||
much that can be done in that regard. You should avoid passing
|
||||
non-existent files to any of the methods, since this will lead
|
||||
to undefied behaviour.
|
||||
|
||||
.. py:attribute:: running
|
||||
|
||||
A Boolean value indicating whether this instance is currently
|
||||
associated with a running subprocess.
|
||||
"""
|
||||
|
||||
def __init__(self, executable_=None):
|
||||
if executable_ is None:
|
||||
self.executable = executable
|
||||
else:
|
||||
self.executable = executable_
|
||||
self.running = False
|
||||
|
||||
def start(self):
|
||||
"""Start an ``exiftool`` process in batch mode for this instance.
|
||||
|
||||
This method will issue a ``UserWarning`` if the subprocess is
|
||||
already running. The process is started with the ``-G`` and
|
||||
``-n`` as common arguments, which are automatically included
|
||||
in every command you run with :py:meth:`execute()`.
|
||||
"""
|
||||
if self.running:
|
||||
warnings.warn("ExifTool already running; doing nothing.")
|
||||
return
|
||||
with open(os.devnull, "w") as devnull:
|
||||
self._process = subprocess.Popen(
|
||||
[self.executable, "-stay_open", "True", "-@", "-",
|
||||
"-common_args", "-G", "-n"],
|
||||
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
|
||||
stderr=devnull)
|
||||
self.running = True
|
||||
|
||||
def terminate(self):
|
||||
"""Terminate the ``exiftool`` process of this instance.
|
||||
|
||||
If the subprocess isn't running, this method will do nothing.
|
||||
"""
|
||||
if not self.running:
|
||||
return
|
||||
self._process.stdin.write(b"-stay_open\nFalse\n")
|
||||
self._process.stdin.flush()
|
||||
self._process.communicate()
|
||||
del self._process
|
||||
self.running = False
|
||||
|
||||
def __enter__(self):
|
||||
self.start()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.terminate()
|
||||
|
||||
def __del__(self):
|
||||
self.terminate()
|
||||
|
||||
def execute(self, *params):
|
||||
"""Execute the given batch of parameters with ``exiftool``.
|
||||
|
||||
This method accepts any number of parameters and sends them to
|
||||
the attached ``exiftool`` process. The process must be
|
||||
running, otherwise ``ValueError`` is raised. The final
|
||||
``-execute`` necessary to actually run the batch is appended
|
||||
automatically; see the documentation of :py:meth:`start()` for
|
||||
the common options. The ``exiftool`` output is read up to the
|
||||
end-of-output sentinel and returned as a raw ``bytes`` object,
|
||||
excluding the sentinel.
|
||||
|
||||
The parameters must also be raw ``bytes``, in whatever
|
||||
encoding exiftool accepts. For filenames, this should be the
|
||||
system's filesystem encoding.
|
||||
|
||||
.. note:: This is considered a low-level method, and should
|
||||
rarely be needed by application developers.
|
||||
"""
|
||||
if not self.running:
|
||||
raise ValueError("ExifTool instance not running.")
|
||||
self._process.stdin.write(b"\n".join(params + (b"-execute\n",)))
|
||||
self._process.stdin.flush()
|
||||
output = b""
|
||||
fd = self._process.stdout.fileno()
|
||||
while not output[-32:].strip().endswith(sentinel):
|
||||
output += os.read(fd, block_size)
|
||||
return output.strip()[:-len(sentinel)]
|
||||
|
||||
def execute_json(self, *params):
|
||||
"""Execute the given batch of parameters and parse the JSON output.
|
||||
|
||||
This method is similar to :py:meth:`execute()`. It
|
||||
automatically adds the parameter ``-j`` to request JSON output
|
||||
from ``exiftool`` and parses the output. The return value is
|
||||
a list of dictionaries, mapping tag names to the corresponding
|
||||
values. All keys are Unicode strings with the tag names
|
||||
including the ExifTool group name in the format <group>:<tag>.
|
||||
The values can have multiple types. All strings occurring as
|
||||
values will be Unicode strings. Each dictionary contains the
|
||||
name of the file it corresponds to in the key ``"SourceFile"``.
|
||||
|
||||
The parameters to this function must be either raw strings
|
||||
(type ``str`` in Python 2.x, type ``bytes`` in Python 3.x) or
|
||||
Unicode strings (type ``unicode`` in Python 2.x, type ``str``
|
||||
in Python 3.x). Unicode strings will be encoded using
|
||||
system's filesystem encoding. This behaviour means you can
|
||||
pass in filenames according to the convention of the
|
||||
respective Python version – as raw strings in Python 2.x and
|
||||
as Unicode strings in Python 3.x.
|
||||
"""
|
||||
params = map(fsencode, params)
|
||||
return json.loads(self.execute(b"-j", *params).decode("utf-8"))
|
||||
|
||||
def get_metadata_batch(self, filenames):
|
||||
"""Return all meta-data for the given files.
|
||||
|
||||
The return value will have the format described in the
|
||||
documentation of :py:meth:`execute_json()`.
|
||||
"""
|
||||
return self.execute_json(*filenames)
|
||||
|
||||
def get_metadata(self, filename):
|
||||
"""Return meta-data for a single file.
|
||||
|
||||
The returned dictionary has the format described in the
|
||||
documentation of :py:meth:`execute_json()`.
|
||||
"""
|
||||
return self.execute_json(filename)[0]
|
||||
|
||||
def get_tags_batch(self, tags, filenames):
|
||||
"""Return only specified tags for the given files.
|
||||
|
||||
The first argument is an iterable of tags. The tag names may
|
||||
include group names, as usual in the format <group>:<tag>.
|
||||
|
||||
The second argument is an iterable of file names.
|
||||
|
||||
The format of the return value is the same as for
|
||||
:py:meth:`execute_json()`.
|
||||
"""
|
||||
# Explicitly ruling out strings here because passing in a
|
||||
# string would lead to strange and hard-to-find errors
|
||||
if isinstance(tags, basestring):
|
||||
raise TypeError("The argument 'tags' must be "
|
||||
"an iterable of strings")
|
||||
if isinstance(filenames, basestring):
|
||||
raise TypeError("The argument 'filenames' must be "
|
||||
"an iterable of strings")
|
||||
params = ["-" + t for t in tags]
|
||||
params.extend(filenames)
|
||||
return self.execute_json(*params)
|
||||
|
||||
def get_tags(self, tags, filename):
|
||||
"""Return only specified tags for a single file.
|
||||
|
||||
The returned dictionary has the format described in the
|
||||
documentation of :py:meth:`execute_json()`.
|
||||
"""
|
||||
return self.get_tags_batch(tags, [filename])[0]
|
||||
|
||||
def get_tag_batch(self, tag, filenames):
|
||||
"""Extract a single tag from the given files.
|
||||
|
||||
The first argument is a single tag name, as usual in the
|
||||
format <group>:<tag>.
|
||||
|
||||
The second argument is an iterable of file names.
|
||||
|
||||
The return value is a list of tag values or ``None`` for
|
||||
non-existent tags, in the same order as ``filenames``.
|
||||
"""
|
||||
data = self.get_tags_batch([tag], filenames)
|
||||
result = []
|
||||
for d in data:
|
||||
d.pop("SourceFile")
|
||||
result.append(next(iter(d.values()), None))
|
||||
return result
|
||||
|
||||
def get_tag(self, tag, filename):
|
||||
"""Extract a single tag from a single file.
|
||||
|
||||
The return value is the value of the specified tag, or
|
||||
``None`` if this tag was not found in the file.
|
||||
"""
|
||||
return self.get_tag_batch(tag, [filename])[0]
|
Loading…
Reference in a new issue