mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Merge pull request #21 from debanjum/saba/dockerize
Add Docker support to semantic-search
This commit is contained in:
commit
d943d2be80
6 changed files with 169 additions and 31 deletions
29
Dockerfile
Normal file
29
Dockerfile
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
# syntax=docker/dockerfile:1
|
||||||
|
FROM continuumio/miniconda3:latest
|
||||||
|
|
||||||
|
# Install system dependencies.
|
||||||
|
RUN apt-get update -y && \
|
||||||
|
apt-get -y install libimage-exiftool-perl
|
||||||
|
|
||||||
|
# Add the local code to the /app directory and set it to be the working directory.
|
||||||
|
# Since we mount the /app directory as a volume in docker-compose.yml, this
|
||||||
|
# allows us to automatically update the code in the Docker image when it's changed.
|
||||||
|
ADD . /app
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Get the arguments from the docker-compose environment.
|
||||||
|
ARG PORT
|
||||||
|
EXPOSE ${PORT}
|
||||||
|
|
||||||
|
# Create the conda environment.
|
||||||
|
RUN conda env create -f environment.yml
|
||||||
|
|
||||||
|
# Use the conda environment we created to run the application.
|
||||||
|
# To enable the conda env, we cannot simply RUN `conda activate semantic-search`,
|
||||||
|
# since each RUN command in a Dockerfile is a separate bash shell.
|
||||||
|
# The environment would not carry forward.
|
||||||
|
# Instead, we'll use `conda run` to run the application.
|
||||||
|
# There are more arguments required for the script to run,
|
||||||
|
# but these should be passed in through the docker-compose.yml file.
|
||||||
|
ENTRYPOINT ["conda", "run", "--no-capture-output", "--name", "semantic-search", \
|
||||||
|
"python3", "-m", "src.main"]
|
86
README.org
86
README.org
|
@ -5,32 +5,52 @@
|
||||||
|
|
||||||
All data is processed locally. User can interface with semantic-search app via [[./src/interface/emacs/semantic-search.el][Emacs]], API or Commandline
|
All data is processed locally. User can interface with semantic-search app via [[./src/interface/emacs/semantic-search.el][Emacs]], API or Commandline
|
||||||
|
|
||||||
** Dependencies
|
** Setup
|
||||||
- Python3
|
|
||||||
- [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]]
|
|
||||||
|
|
||||||
** Install
|
*** Setup using Docker
|
||||||
#+begin_src shell
|
|
||||||
git clone https://github.com/debanjum/semantic-search && cd semantic-search
|
|
||||||
conda env create -f environment.yml
|
|
||||||
conda activate semantic-search
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
*** Install Environmental Dependencies
|
**** 1. Clone Repository
|
||||||
#+begin_src shell
|
#+begin_src shell
|
||||||
sudo apt-get -y install libimage-exiftool-perl
|
git clone https://github.com/debanjum/semantic-search && cd semantic-search
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
** Configure
|
**** 2. Configure
|
||||||
Configure application search types and their underlying data source/files in ~sample_config.yml~
|
Add Content Directories for Semantic Search to Docker-Compose
|
||||||
Use the ~sample_config.yml~ as reference
|
Update [[./docker-compose.yml][docker-compose.yml]] to mount your images, org-mode notes, ledger/beancount directories
|
||||||
|
If required, edit config settings in [[./docker_sample_config.yml][docker_sample_config.yml]].
|
||||||
|
|
||||||
** Run
|
**** 3. Run
|
||||||
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
|
#+begin_src shell
|
||||||
|
docker-compose up -d
|
||||||
|
#+end_src
|
||||||
|
|
||||||
#+begin_src shell
|
*** Setup on Local Machine
|
||||||
python3 -m src.main -c=sample_config.yml -vv
|
|
||||||
#+end_src
|
**** 1. Install Dependencies
|
||||||
|
1. Install Python3 [Required[
|
||||||
|
2. [[https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html][Install Conda]] [Required]
|
||||||
|
3. Install Exiftool [Optional]
|
||||||
|
#+begin_src shell
|
||||||
|
sudo apt-get -y install libimage-exiftool-perl
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
**** 2. Install Semantic Search
|
||||||
|
#+begin_src shell
|
||||||
|
git clone https://github.com/debanjum/semantic-search && cd semantic-search
|
||||||
|
conda env create -f environment.yml
|
||||||
|
conda activate semantic-search
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
**** 3. Configure
|
||||||
|
Configure application search types and their underlying data source/files in ~sample_config.yml~
|
||||||
|
Use the ~sample_config.yml~ as reference
|
||||||
|
|
||||||
|
**** 4. Run
|
||||||
|
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
|
||||||
|
|
||||||
|
#+begin_src shell
|
||||||
|
python3 -m src.main -c=sample_config.yml -vv
|
||||||
|
#+end_src
|
||||||
|
|
||||||
** Use
|
** Use
|
||||||
- *Semantic Search via Emacs*
|
- *Semantic Search via Emacs*
|
||||||
|
@ -39,16 +59,26 @@
|
||||||
|
|
||||||
- *Semantic Search via API*
|
- *Semantic Search via API*
|
||||||
- Query: ~GET~ [[http://localhost:8000/search?q=%22what%20is%20the%20meaning%20of%20life%22][http://localhost:8000/search?q="What is the meaning of life"&t=notes]]
|
- Query: ~GET~ [[http://localhost:8000/search?q=%22what%20is%20the%20meaning%20of%20life%22][http://localhost:8000/search?q="What is the meaning of life"&t=notes]]
|
||||||
- Regenerate Embeddings: ~GET~ [[http://localhost:8000/regenerate][http://localhost:8000/regenerate?t=image]]
|
- Regenerate Embeddings: ~GET~ [[http://localhost:8000/regenerate][http://localhost:8000/regenerate]]
|
||||||
- [[http://localhost:8000/docs][Semantic Search API Docs]]
|
- [[http://localhost:8000/docs][Semantic Search API Docs]]
|
||||||
|
|
||||||
|
- *UI to Edit Config*
|
||||||
|
- [[https://localhost:8000/ui][Config UI]]
|
||||||
|
|
||||||
** Upgrade
|
** Upgrade
|
||||||
#+begin_src shell
|
|
||||||
cd semantic-search
|
*** Using Docker
|
||||||
git pull origin master
|
#+begin_src shell
|
||||||
conda env update -f environment.yml
|
docker-compose up
|
||||||
conda activate semantic-search
|
#+end_src
|
||||||
#+end_src
|
|
||||||
|
*** On Local Machine
|
||||||
|
#+begin_src shell
|
||||||
|
cd semantic-search
|
||||||
|
git pull origin master
|
||||||
|
conda env update -f environment.yml
|
||||||
|
conda activate semantic-search
|
||||||
|
#+end_src
|
||||||
|
|
||||||
** Acknowledgments
|
** Acknowledgments
|
||||||
- [[https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3][MiniLM Model]] for Asymmetric Text Search. See [[https://www.sbert.net/examples/applications/retrieve_rerank/README.html][SBert Documentation]]
|
- [[https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3][MiniLM Model]] for Asymmetric Text Search. See [[https://www.sbert.net/examples/applications/retrieve_rerank/README.html][SBert Documentation]]
|
||||||
|
|
32
docker-compose.yml
Normal file
32
docker-compose.yml
Normal file
|
@ -0,0 +1,32 @@
|
||||||
|
version: "3.9"
|
||||||
|
services:
|
||||||
|
server:
|
||||||
|
build:
|
||||||
|
context: .
|
||||||
|
dockerfile: Dockerfile
|
||||||
|
args:
|
||||||
|
- PORT=8000
|
||||||
|
ports:
|
||||||
|
# If changing the local port (left hand side), no other changes required.
|
||||||
|
# If changing the remote port (right hand side),
|
||||||
|
# change the port in the args in the build section,
|
||||||
|
# as well as the port in the command section to match
|
||||||
|
- "8000:8000"
|
||||||
|
working_dir: /app
|
||||||
|
volumes:
|
||||||
|
- .:/app
|
||||||
|
# These mounted volumes hold the raw data that should be indexed for search.
|
||||||
|
# The path in your local directory (left hand side)
|
||||||
|
# points to the files you want to index.
|
||||||
|
# The path of the mounted directory (right hand side),
|
||||||
|
# must match the path prefix in your config file.
|
||||||
|
- ./tests/data/:/data/notes/
|
||||||
|
- ./tests/data/:/data/images/
|
||||||
|
- ./tests/data/:/data/ledger/
|
||||||
|
- ./tests/data/:/data/music/
|
||||||
|
# It's ok if you don't have existing embeddings.
|
||||||
|
# You can set this volume to point to an empty folder.
|
||||||
|
- ./tests/data/:/data/generated/
|
||||||
|
|
||||||
|
# Use 0.0.0.0 to explicitly set the host ip for the service on the container. https://pythonspeed.com/articles/docker-connection-refused/
|
||||||
|
command: --host="0.0.0.0" --port=8000 -c=docker_sample_config.yml -vv
|
47
docker_sample_config.yml
Normal file
47
docker_sample_config.yml
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
content-type:
|
||||||
|
# The /data/folder/ prefix to the folders is here because this is
|
||||||
|
# the directory to which the local files are copied in the docker-compose.
|
||||||
|
# If changing, the docker-compose volumes should also be changed to match.
|
||||||
|
org:
|
||||||
|
input-files: null
|
||||||
|
input-filter: "/data/notes/*.org"
|
||||||
|
compressed-jsonl: "/data/generated/.notes.json.gz"
|
||||||
|
embeddings-file: "/data/generated/.note_embeddings.pt"
|
||||||
|
|
||||||
|
ledger:
|
||||||
|
input-files: null
|
||||||
|
input-filter: /data/ledger/*.beancount
|
||||||
|
compressed-jsonl: /data/generated/.transactions.jsonl.gz
|
||||||
|
embeddings-file: /data/generated/.transaction_embeddings.pt
|
||||||
|
|
||||||
|
image:
|
||||||
|
input-directory: "/data/images/"
|
||||||
|
embeddings-file: "/data/generated/.image_embeddings.pt"
|
||||||
|
batch-size: 50
|
||||||
|
use-xmp-metadata: true
|
||||||
|
|
||||||
|
music:
|
||||||
|
input-files: null
|
||||||
|
input-filter: "/data/music/*.org"
|
||||||
|
compressed-jsonl: "/data/generated/.songs.jsonl.gz"
|
||||||
|
embeddings-file: "/data/generated/.song_embeddings.pt"
|
||||||
|
|
||||||
|
search-type:
|
||||||
|
symmetric:
|
||||||
|
encoder: "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
||||||
|
cross-encoder: "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||||
|
model_directory: "/data/models/.symmetric"
|
||||||
|
|
||||||
|
asymmetric:
|
||||||
|
encoder: "sentence-transformers/msmarco-MiniLM-L-6-v3"
|
||||||
|
cross-encoder: "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||||
|
model_directory: "/data/models/.asymmetric"
|
||||||
|
|
||||||
|
image:
|
||||||
|
encoder: "clip-ViT-B-32"
|
||||||
|
model_directory: "/data/models/.image_encoder"
|
||||||
|
|
||||||
|
processor:
|
||||||
|
conversation:
|
||||||
|
openai-api-key: null
|
||||||
|
conversation-logfile: "/data/conversation/.conversation_logs.json"
|
|
@ -15,7 +15,7 @@ content-type:
|
||||||
input-directory: "tests/data"
|
input-directory: "tests/data"
|
||||||
embeddings-file: "tests/data/.image_embeddings.pt"
|
embeddings-file: "tests/data/.image_embeddings.pt"
|
||||||
batch-size: 50
|
batch-size: 50
|
||||||
use-xmp-metadata: "no"
|
use-xmp-metadata: false
|
||||||
|
|
||||||
music:
|
music:
|
||||||
input-files: ["tests/data/music.org"]
|
input-files: ["tests/data/music.org"]
|
||||||
|
|
|
@ -20,7 +20,7 @@ class TextContentConfig(ConfigBase):
|
||||||
embeddings_file: Optional[Path]
|
embeddings_file: Optional[Path]
|
||||||
|
|
||||||
class ImageContentConfig(ConfigBase):
|
class ImageContentConfig(ConfigBase):
|
||||||
use_xmp_metadata: Optional[str]
|
use_xmp_metadata: Optional[bool]
|
||||||
batch_size: Optional[int]
|
batch_size: Optional[int]
|
||||||
input_directory: Optional[Path]
|
input_directory: Optional[Path]
|
||||||
input_filter: Optional[str]
|
input_filter: Optional[str]
|
||||||
|
|
Loading…
Reference in a new issue