mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Merge pull request #10 from debanjum/saba/configui
Create a UI from which a user can update their config and integrate BaseModel for the config input
This commit is contained in:
commit
e5a19f5b0e
17 changed files with 361 additions and 171 deletions
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -3,4 +3,6 @@ __pycache__
|
|||
.emacs.desktop*
|
||||
tests/data/.*
|
||||
src/.data
|
||||
.vscode
|
||||
.vscode
|
||||
*.gz
|
||||
*.pt
|
|
@ -13,4 +13,6 @@ dependencies:
|
|||
- pytest=6.*
|
||||
- pillow=8.*
|
||||
- torchvision=0.*
|
||||
- openai=0.*
|
||||
- openai=0.*
|
||||
- pydantic=1.*
|
||||
- jinja2=3.0.*
|
||||
|
|
110
src/main.py
110
src/main.py
|
@ -1,26 +1,49 @@
|
|||
# Standard Packages
|
||||
import sys
|
||||
import json
|
||||
import sys, json, yaml
|
||||
from typing import Optional
|
||||
|
||||
# External Packages
|
||||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import HTMLResponse
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from fastapi.templating import Jinja2Templates
|
||||
|
||||
# Internal Packages
|
||||
from src.search_type import asymmetric, symmetric_ledger, image_search
|
||||
from src.utils.helpers import get_absolute_path
|
||||
from src.utils.cli import cli
|
||||
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
|
||||
from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel
|
||||
from src.utils.rawconfig import FullConfig
|
||||
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand
|
||||
|
||||
|
||||
# Application Global State
|
||||
model = SearchModels()
|
||||
search_config = SearchConfig()
|
||||
processor_config = ProcessorConfig()
|
||||
processor_config = ProcessorConfigModel()
|
||||
config = {}
|
||||
config_file = ""
|
||||
verbose = 0
|
||||
app = FastAPI()
|
||||
|
||||
app.mount("/views", StaticFiles(directory="views"), name="views")
|
||||
templates = Jinja2Templates(directory="views/")
|
||||
|
||||
@app.get('/ui', response_class=HTMLResponse)
|
||||
def ui(request: Request):
|
||||
return templates.TemplateResponse("config.html", context={'request': request})
|
||||
|
||||
@app.get('/config', response_model=FullConfig)
|
||||
def config():
|
||||
return config
|
||||
|
||||
@app.post('/config')
|
||||
async def config(updated_config: FullConfig):
|
||||
global config
|
||||
config = updated_config
|
||||
with open(config_file, 'w') as outfile:
|
||||
yaml.dump(yaml.safe_load(config.json(by_alias=True)), outfile)
|
||||
outfile.close()
|
||||
return config
|
||||
|
||||
@app.get('/search')
|
||||
def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
||||
|
@ -60,7 +83,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
|||
return image_search.collate_results(
|
||||
hits,
|
||||
model.image_search.image_names,
|
||||
search_config.image.input_directory,
|
||||
config.content_type.image.input_directory,
|
||||
results_count)
|
||||
|
||||
else:
|
||||
|
@ -69,22 +92,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
|||
|
||||
@app.get('/regenerate')
|
||||
def regenerate(t: Optional[SearchType] = None):
|
||||
if (t == SearchType.Notes or t == None) and search_config.notes:
|
||||
# Extract Entries, Generate Embeddings
|
||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=True)
|
||||
|
||||
if (t == SearchType.Music or t == None) and search_config.music:
|
||||
# Extract Entries, Generate Song Embeddings
|
||||
model.music_search = asymmetric.setup(search_config.music, regenerate=True)
|
||||
|
||||
if (t == SearchType.Ledger or t == None) and search_config.ledger:
|
||||
# Extract Entries, Generate Embeddings
|
||||
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=True)
|
||||
|
||||
if (t == SearchType.Image or t == None) and search_config.image:
|
||||
# Extract Images, Generate Embeddings
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=True)
|
||||
|
||||
initialize_search(regenerate=True, t=t)
|
||||
return {'status': 'ok', 'message': 'regeneration completed'}
|
||||
|
||||
|
||||
|
@ -105,37 +113,40 @@ def chat(q: str):
|
|||
return {'status': 'ok', 'response': gpt_response}
|
||||
|
||||
|
||||
def initialize_search(config, regenerate, verbose):
|
||||
def initialize_search(config: FullConfig, regenerate: bool, t: SearchType = None):
|
||||
model = SearchModels()
|
||||
search_config = SearchConfig()
|
||||
|
||||
# Initialize Org Notes Search
|
||||
search_config.notes = TextSearchConfig.create_from_dictionary(config, ('content-type', 'org'), verbose)
|
||||
if search_config.notes:
|
||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=regenerate)
|
||||
if (t == SearchType.Notes or t == None) and config.content_type.org:
|
||||
# Extract Entries, Generate Notes Embeddings
|
||||
model.notes_search = asymmetric.setup(config.content_type.org, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Org Music Search
|
||||
search_config.music = TextSearchConfig.create_from_dictionary(config, ('content-type', 'music'), verbose)
|
||||
if search_config.music:
|
||||
model.music_search = asymmetric.setup(search_config.music, regenerate=regenerate)
|
||||
if (t == SearchType.Music or t == None) and config.content_type.music:
|
||||
# Extract Entries, Generate Music Embeddings
|
||||
model.music_search = asymmetric.setup(config.content_type.music, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Ledger Search
|
||||
search_config.ledger = TextSearchConfig.create_from_dictionary(config, ('content-type', 'ledger'), verbose)
|
||||
if search_config.ledger:
|
||||
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=regenerate)
|
||||
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
|
||||
# Extract Entries, Generate Ledger Embeddings
|
||||
model.ledger_search = symmetric_ledger.setup(config.content_type.ledger, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Image Search
|
||||
search_config.image = ImageSearchConfig.create_from_dictionary(config, ('content-type', 'image'), verbose)
|
||||
if search_config.image:
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=regenerate)
|
||||
if (t == SearchType.Image or t == None) and config.content_type.image:
|
||||
# Extract Entries, Generate Image Embeddings
|
||||
model.image_search = image_search.setup(config.content_type.image, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return model, search_config
|
||||
return model
|
||||
|
||||
|
||||
def initialize_processor(config, verbose):
|
||||
def initialize_processor(config: FullConfig):
|
||||
if not config.processor:
|
||||
return
|
||||
|
||||
processor_config = ProcessorConfigModel()
|
||||
|
||||
# Initialize Conversation Processor
|
||||
processor_config = ProcessorConfig()
|
||||
processor_config.conversation = ConversationProcessorConfig.create_from_dictionary(config, ('processor', 'conversation'), verbose)
|
||||
processor_config.conversation = ConversationProcessorConfigModel(config.processor.conversation, verbose)
|
||||
|
||||
conversation_logfile = processor_config.conversation.conversation_logfile
|
||||
if processor_config.conversation.verbose:
|
||||
|
@ -180,12 +191,21 @@ def shutdown_event():
|
|||
if __name__ == '__main__':
|
||||
# Load config from CLI
|
||||
args = cli(sys.argv[1:])
|
||||
|
||||
# Stores the file path to the config file.
|
||||
config_file = args.config_file
|
||||
|
||||
# Initialize Search from Config
|
||||
model, search_config = initialize_search(args.config, args.regenerate, args.verbose)
|
||||
# Store the verbose flag
|
||||
verbose = args.verbose
|
||||
|
||||
# Store the raw config data.
|
||||
config = args.config
|
||||
|
||||
# Initialize the search model from Config
|
||||
model = initialize_search(args.config, args.regenerate)
|
||||
|
||||
# Initialize Processor from Config
|
||||
processor_config = initialize_processor(args.config, args.verbose)
|
||||
processor_config = initialize_processor(args.config)
|
||||
|
||||
# Start Application Server
|
||||
if args.socket:
|
||||
|
|
|
@ -14,7 +14,8 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
|||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
|
||||
from src.utils.config import TextSearchModel, TextSearchConfig
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
|
@ -58,7 +59,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
|
|||
corpus_embeddings = bi_encoder.encode([entry[0] for entry in entries], convert_to_tensor=True, show_progress_bar=True)
|
||||
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
|
||||
if verbose > 0:
|
||||
print(f"Computed embeddings and save them to {embeddings_file}")
|
||||
print(f"Computed embeddings and saved them to {embeddings_file}")
|
||||
|
||||
return corpus_embeddings
|
||||
|
||||
|
@ -148,22 +149,22 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
|
||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, config.verbose)
|
||||
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, verbose)
|
||||
|
||||
# Extract Entries
|
||||
entries = extract_entries(config.compressed_jsonl, config.verbose)
|
||||
entries = extract_entries(config.compressed_jsonl, verbose)
|
||||
top_k = min(len(entries), top_k) # top_k hits can't be more than the total entries in corpus
|
||||
|
||||
# Compute or Load Embeddings
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -10,9 +10,10 @@ from tqdm import trange
|
|||
import torch
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.utils.helpers import resolve_absolute_path
|
||||
import src.utils.exiftool as exiftool
|
||||
from src.utils.config import ImageSearchModel, ImageSearchConfig
|
||||
from src.utils.config import ImageSearchModel
|
||||
from src.utils.rawconfig import ImageSearchConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
|
@ -153,7 +154,7 @@ def collate_results(hits, image_names, image_directory, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
||||
def setup(config: ImageSearchConfig, regenerate: bool, verbose: bool) -> ImageSearchModel:
|
||||
# Initialize Model
|
||||
encoder = initialize_model()
|
||||
|
||||
|
@ -170,13 +171,13 @@ def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
|||
batch_size=config.batch_size,
|
||||
regenerate=regenerate,
|
||||
use_xmp_metadata=config.use_xmp_metadata,
|
||||
verbose=config.verbose)
|
||||
verbose=verbose)
|
||||
|
||||
return ImageSearchModel(image_names,
|
||||
image_embeddings,
|
||||
image_metadata_embeddings,
|
||||
encoder,
|
||||
config.verbose)
|
||||
verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
# Standard Packages
|
||||
import json
|
||||
import time
|
||||
import gzip
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
import argparse
|
||||
import pathlib
|
||||
|
@ -15,11 +12,12 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
|||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl
|
||||
from src.utils.config import TextSearchModel, TextSearchConfig
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
"Initialize model for symetric semantic search. That is, where query of similar size to results"
|
||||
"Initialize model for symmetric semantic search. That is, where query of similar size to results"
|
||||
torch.set_num_threads(4)
|
||||
bi_encoder = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') # The encoder encodes all entries to use for semantic search
|
||||
top_k = 30 # Number of entries we want to retrieve with the bi-encoder
|
||||
|
@ -55,7 +53,7 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
|
|||
corpus_embeddings = bi_encoder.encode(entries, convert_to_tensor=True, show_progress_bar=True)
|
||||
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
|
||||
if verbose > 0:
|
||||
print(f"Computed embeddings and save them to {embeddings_file}")
|
||||
print(f"Computed embeddings and saved them to {embeddings_file}")
|
||||
|
||||
return corpus_embeddings
|
||||
|
||||
|
@ -143,7 +141,7 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
|
||||
|
@ -156,9 +154,9 @@ def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
|||
top_k = min(len(entries), top_k)
|
||||
|
||||
# Compute or Load Embeddings
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
# Standard Packages
|
||||
import argparse
|
||||
import pathlib
|
||||
import json
|
||||
|
||||
# External Packages
|
||||
import yaml
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import is_none_or_empty, get_absolute_path, resolve_absolute_path, get_from_dict, merge_dicts
|
||||
from src.utils.helpers import is_none_or_empty, get_absolute_path, resolve_absolute_path, merge_dicts
|
||||
from src.utils.rawconfig import FullConfig
|
||||
|
||||
def cli(args=None):
|
||||
if is_none_or_empty(args):
|
||||
|
@ -35,12 +37,15 @@ def cli(args=None):
|
|||
with open(get_absolute_path(args.config_file), 'r', encoding='utf-8') as config_file:
|
||||
config_from_file = yaml.safe_load(config_file)
|
||||
args.config = merge_dicts(priority_dict=config_from_file, default_dict=args.config)
|
||||
args.config = FullConfig.parse_obj(args.config)
|
||||
else:
|
||||
args.config = FullConfig.parse_obj(args.config)
|
||||
|
||||
if args.org_files:
|
||||
args.config['content-type']['org']['input-files'] = args.org_files
|
||||
args.config.content_type.org.input_files = args.org_files
|
||||
|
||||
if args.org_filter:
|
||||
args.config['content-type']['org']['input-filter'] = args.org_filter
|
||||
args.config.content_type.org.input_filter = args.org_filter
|
||||
|
||||
return args
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ from dataclasses import dataclass
|
|||
from pathlib import Path
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_from_dict
|
||||
from src.utils.rawconfig import ConversationProcessorConfig
|
||||
|
||||
|
||||
class SearchType(str, Enum):
|
||||
|
@ -42,80 +42,15 @@ class SearchModels():
|
|||
image_search: ImageSearchModel = None
|
||||
|
||||
|
||||
class TextSearchConfig():
|
||||
def __init__(self, input_files, input_filter, compressed_jsonl, embeddings_file, verbose):
|
||||
self.input_files = input_files
|
||||
self.input_filter = input_filter
|
||||
self.compressed_jsonl = Path(compressed_jsonl)
|
||||
self.embeddings_file = Path(embeddings_file)
|
||||
class ConversationProcessorConfigModel():
|
||||
def __init__(self, processor_config: ConversationProcessorConfig, verbose: bool):
|
||||
self.openai_api_key = processor_config.open_api_key
|
||||
self.conversation_logfile = Path(processor_config.conversation_logfile)
|
||||
self.chat_log = ''
|
||||
self.meta_log = []
|
||||
self.conversation_history = Path(processor_config.conversation_history)
|
||||
self.verbose = verbose
|
||||
|
||||
|
||||
def create_from_dictionary(config, key_tree, verbose):
|
||||
text_config = get_from_dict(config, *key_tree)
|
||||
search_enabled = text_config and ('input-files' in text_config or 'input-filter' in text_config)
|
||||
if not search_enabled:
|
||||
return None
|
||||
|
||||
return TextSearchConfig(
|
||||
input_files = text_config['input-files'],
|
||||
input_filter = text_config['input-filter'],
|
||||
compressed_jsonl = Path(text_config['compressed-jsonl']),
|
||||
embeddings_file = Path(text_config['embeddings-file']),
|
||||
verbose = verbose)
|
||||
|
||||
|
||||
class ImageSearchConfig():
|
||||
def __init__(self, input_directory, embeddings_file, batch_size, use_xmp_metadata, verbose):
|
||||
self.input_directory = input_directory
|
||||
self.embeddings_file = Path(embeddings_file)
|
||||
self.batch_size = batch_size
|
||||
self.use_xmp_metadata = use_xmp_metadata
|
||||
self.verbose = verbose
|
||||
|
||||
def create_from_dictionary(config, key_tree, verbose):
|
||||
image_config = get_from_dict(config, *key_tree)
|
||||
search_enabled = image_config and 'input-directory' in image_config
|
||||
if not search_enabled:
|
||||
return None
|
||||
|
||||
return ImageSearchConfig(
|
||||
input_directory = Path(image_config['input-directory']),
|
||||
embeddings_file = Path(image_config['embeddings-file']),
|
||||
batch_size = image_config['batch-size'],
|
||||
use_xmp_metadata = {'yes': True, 'no': False}[image_config['use-xmp-metadata']],
|
||||
verbose = verbose)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SearchConfig():
|
||||
notes: TextSearchConfig = None
|
||||
ledger: TextSearchConfig = None
|
||||
music: TextSearchConfig = None
|
||||
image: ImageSearchConfig = None
|
||||
|
||||
|
||||
class ConversationProcessorConfig():
|
||||
def __init__(self, conversation_logfile, chat_log, meta_log, openai_api_key, verbose):
|
||||
self.openai_api_key = openai_api_key
|
||||
self.conversation_logfile = conversation_logfile
|
||||
self.chat_log = chat_log
|
||||
self.meta_log = meta_log
|
||||
self.verbose = verbose
|
||||
|
||||
def create_from_dictionary(config, key_tree, verbose):
|
||||
conversation_config = get_from_dict(config, *key_tree)
|
||||
if not conversation_config:
|
||||
return None
|
||||
|
||||
return ConversationProcessorConfig(
|
||||
openai_api_key = conversation_config['openai-api-key'],
|
||||
chat_log = '',
|
||||
meta_log = [],
|
||||
conversation_logfile = Path(conversation_config['conversation-logfile']),
|
||||
verbose = verbose)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProcessorConfig():
|
||||
conversation: ConversationProcessorConfig = None
|
||||
class ProcessorConfigModel():
|
||||
conversation: ConversationProcessorConfigModel = None
|
||||
|
|
|
@ -4,6 +4,8 @@ import pathlib
|
|||
def is_none_or_empty(item):
|
||||
return item == None or (hasattr(item, '__iter__') and len(item) == 0)
|
||||
|
||||
def to_snake_case_from_dash(item: str):
|
||||
return item.replace('_', '-')
|
||||
|
||||
def get_absolute_path(filepath):
|
||||
return str(pathlib.Path(filepath).expanduser().absolute())
|
||||
|
|
62
src/utils/rawconfig.py
Normal file
62
src/utils/rawconfig.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
# System Packages
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
# External Packages
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import to_snake_case_from_dash
|
||||
|
||||
class ConfigBase(BaseModel):
|
||||
class Config:
|
||||
alias_generator = to_snake_case_from_dash
|
||||
allow_population_by_field_name = True
|
||||
|
||||
class SearchConfig(ConfigBase):
|
||||
input_files: Optional[List[str]]
|
||||
input_filter: Optional[str]
|
||||
embeddings_file: Optional[Path]
|
||||
|
||||
class TextSearchConfig(ConfigBase):
|
||||
compressed_jsonl: Optional[Path]
|
||||
input_files: Optional[List[str]]
|
||||
input_filter: Optional[str]
|
||||
embeddings_file: Optional[Path]
|
||||
|
||||
class ImageSearchConfig(ConfigBase):
|
||||
use_xmp_metadata: Optional[str]
|
||||
batch_size: Optional[int]
|
||||
input_directory: Optional[Path]
|
||||
input_filter: Optional[str]
|
||||
embeddings_file: Optional[Path]
|
||||
|
||||
class ContentTypeConfig(ConfigBase):
|
||||
org: Optional[TextSearchConfig]
|
||||
ledger: Optional[TextSearchConfig]
|
||||
image: Optional[ImageSearchConfig]
|
||||
music: Optional[TextSearchConfig]
|
||||
|
||||
class AsymmetricConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
cross_encoder: Optional[str]
|
||||
|
||||
class ImageSearchTypeConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
|
||||
class SearchTypeConfig(ConfigBase):
|
||||
asymmetric: Optional[AsymmetricConfig]
|
||||
image: Optional[ImageSearchTypeConfig]
|
||||
|
||||
class ConversationProcessorConfig(ConfigBase):
|
||||
open_api_key: Optional[str]
|
||||
conversation_logfile: Optional[str]
|
||||
conversation_history: Optional[str]
|
||||
|
||||
class ProcessorConfigModel(ConfigBase):
|
||||
conversation: Optional[ConversationProcessorConfig]
|
||||
|
||||
class FullConfig(ConfigBase):
|
||||
content_type: Optional[ContentTypeConfig]
|
||||
search_type: Optional[SearchTypeConfig]
|
||||
processor: Optional[ProcessorConfigModel]
|
|
@ -3,8 +3,8 @@ import pytest
|
|||
from pathlib import Path
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.config import SearchConfig, TextSearchConfig, ImageSearchConfig
|
||||
from src.search_type import asymmetric, image_search
|
||||
from src.utils.rawconfig import ContentTypeConfig, ImageSearchConfig, TextSearchConfig
|
||||
|
||||
|
||||
@pytest.fixture(scope='session')
|
||||
|
@ -12,44 +12,40 @@ def model_dir(tmp_path_factory):
|
|||
model_dir = tmp_path_factory.mktemp('data')
|
||||
|
||||
# Generate Image Embeddings from Test Images
|
||||
search_config = SearchConfig()
|
||||
search_config = ContentTypeConfig()
|
||||
search_config.image = ImageSearchConfig(
|
||||
input_directory = Path('tests/data'),
|
||||
embeddings_file = model_dir.joinpath('.image_embeddings.pt'),
|
||||
batch_size = 10,
|
||||
use_xmp_metadata = False,
|
||||
verbose = 2)
|
||||
use_xmp_metadata = False)
|
||||
|
||||
image_search.setup(search_config.image, regenerate=False)
|
||||
image_search.setup(search_config.image, regenerate=False, verbose=True)
|
||||
|
||||
# Generate Notes Embeddings from Test Notes
|
||||
search_config.notes = TextSearchConfig(
|
||||
search_config.org = TextSearchConfig(
|
||||
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')],
|
||||
input_filter = None,
|
||||
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'),
|
||||
verbose = 0)
|
||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'))
|
||||
|
||||
asymmetric.setup(search_config.notes, regenerate=False)
|
||||
asymmetric.setup(search_config.notes, regenerate=False, verbose=True)
|
||||
|
||||
return model_dir
|
||||
|
||||
|
||||
@pytest.fixture(scope='session')
|
||||
def search_config(model_dir):
|
||||
search_config = SearchConfig()
|
||||
search_config.notes = TextSearchConfig(
|
||||
search_config = ContentTypeConfig()
|
||||
search_config.org = TextSearchConfig(
|
||||
input_files = [Path('tests/data/main_readme.org'), Path('tests/data/interface_emacs_readme.org')],
|
||||
input_filter = None,
|
||||
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'),
|
||||
verbose = 2)
|
||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'))
|
||||
|
||||
search_config.image = ImageSearchConfig(
|
||||
input_directory = Path('tests/data'),
|
||||
embeddings_file = Path('tests/data/.image_embeddings.pt'),
|
||||
batch_size = 10,
|
||||
use_xmp_metadata = False,
|
||||
verbose = 2)
|
||||
use_xmp_metadata = False)
|
||||
|
||||
return search_config
|
||||
|
|
|
@ -8,7 +8,7 @@ from src.search_type import asymmetric
|
|||
def test_asymmetric_setup(search_config):
|
||||
# Act
|
||||
# Regenerate notes embeddings during asymmetric setup
|
||||
notes_model = asymmetric.setup(search_config.notes, regenerate=True)
|
||||
notes_model = asymmetric.setup(search_config.org, regenerate=True)
|
||||
|
||||
# Assert
|
||||
assert len(notes_model.entries) == 10
|
||||
|
@ -18,7 +18,7 @@ def test_asymmetric_setup(search_config):
|
|||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_asymmetric_search(search_config):
|
||||
# Arrange
|
||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=False)
|
||||
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||
query = "How to git install application?"
|
||||
|
||||
# Act
|
||||
|
|
|
@ -40,7 +40,7 @@ def test_cli_config_from_file():
|
|||
assert actual_args.config_file == Path('tests/data/config.yml')
|
||||
assert actual_args.regenerate == True
|
||||
assert actual_args.config is not None
|
||||
assert actual_args.config['content-type']['org']['input-files'] == ['~/first_from_config.org', '~/second_from_config.org']
|
||||
assert actual_args.config.content_type.org.input_files == ['~/first_from_config.org', '~/second_from_config.org']
|
||||
assert actual_args.verbose == 3
|
||||
|
||||
|
||||
|
@ -54,7 +54,7 @@ def test_cli_config_from_cmd_args():
|
|||
assert actual_args.org_files == ['first.org']
|
||||
assert actual_args.config_file is None
|
||||
assert actual_args.config is not None
|
||||
assert actual_args.config['content-type']['org']['input-files'] == ['first.org']
|
||||
assert actual_args.config.content_type.org.input_files == ['first.org']
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
|
@ -67,4 +67,4 @@ def test_cli_config_from_cmd_args_override_config_file():
|
|||
assert actual_args.org_files == ['first.org']
|
||||
assert actual_args.config_file == Path('tests/data/config.yml')
|
||||
assert actual_args.config is not None
|
||||
assert actual_args.config['content-type']['org']['input-files'] == ['first.org']
|
||||
assert actual_args.config.content_type.org.input_files == ['first.org']
|
||||
|
|
|
@ -5,15 +5,16 @@ from pathlib import Path
|
|||
from fastapi.testclient import TestClient
|
||||
|
||||
# Internal Packages
|
||||
from src.main import app, model, search_config as main_search_config
|
||||
from src.main import app, model, config
|
||||
from src.search_type import asymmetric, image_search
|
||||
from src.utils.helpers import resolve_absolute_path
|
||||
from src.utils.rawconfig import FullConfig
|
||||
|
||||
|
||||
# Arrange
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
client = TestClient(app)
|
||||
|
||||
config = FullConfig()
|
||||
|
||||
# Test
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
|
@ -31,7 +32,7 @@ def test_search_with_invalid_search_type():
|
|||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_search_with_valid_search_type(search_config):
|
||||
# Arrange
|
||||
main_search_config.image = search_config.image
|
||||
config.content_type.image = search_config.image
|
||||
for search_type in ["notes", "ledger", "music", "image"]:
|
||||
# Act
|
||||
response = client.get(f"/search?q=random&t={search_type}")
|
||||
|
@ -51,7 +52,7 @@ def test_regenerate_with_invalid_search_type():
|
|||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_regenerate_with_valid_search_type(search_config):
|
||||
# Arrange
|
||||
main_search_config.image = search_config.image
|
||||
config.content_type.image = search_config.image
|
||||
for search_type in ["notes", "ledger", "music", "image"]:
|
||||
# Act
|
||||
response = client.get(f"/regenerate?t={search_type}")
|
||||
|
@ -62,7 +63,7 @@ def test_regenerate_with_valid_search_type(search_config):
|
|||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_image_search(search_config):
|
||||
# Arrange
|
||||
main_search_config.image = search_config.image
|
||||
config.content_type.image = search_config.image
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=False)
|
||||
query_expected_image_pairs = [("brown kitten next to fallen plant", "kitten_park.jpg"),
|
||||
("a horse and dog on a leash", "horse_dog.jpg"),
|
||||
|
|
12
views/config.html
Normal file
12
views/config.html
Normal file
|
@ -0,0 +1,12 @@
|
|||
<!DOCTYPE html>
|
||||
<head>
|
||||
<title>Set directories for your config file.</title>
|
||||
<link rel="stylesheet" href="views/style.css">
|
||||
</head>
|
||||
<body>
|
||||
<form id="config-form">
|
||||
</form>
|
||||
<button id="config-regenerate">regenerate</button>
|
||||
</body>
|
||||
<script src="views/scripts/config.js"></script>
|
||||
</html>
|
124
views/scripts/config.js
Normal file
124
views/scripts/config.js
Normal file
|
@ -0,0 +1,124 @@
|
|||
// Retrieve elements from the DOM.
|
||||
var showConfig = document.getElementById("show-config");
|
||||
var configForm = document.getElementById("config-form");
|
||||
var regenerateButton = document.getElementById("config-regenerate");
|
||||
|
||||
// Global variables.
|
||||
var rawConfig = {};
|
||||
var emptyValueDefault = "🖊️";
|
||||
|
||||
/**
|
||||
* Fetch the existing config file.
|
||||
*/
|
||||
fetch("/config")
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
rawConfig = data;
|
||||
configForm.style.display = "block";
|
||||
processChildren(configForm, data);
|
||||
|
||||
var submitButton = document.createElement("button");
|
||||
submitButton.type = "submit";
|
||||
submitButton.innerHTML = "update";
|
||||
configForm.appendChild(submitButton);
|
||||
|
||||
// The config form's submit handler.
|
||||
configForm.addEventListener("submit", (event) => {
|
||||
event.preventDefault();
|
||||
console.log(rawConfig);
|
||||
const response = fetch("/config", {
|
||||
method: "POST",
|
||||
credentials: "same-origin",
|
||||
headers: {
|
||||
'Content-Type': 'application/json'
|
||||
},
|
||||
body: JSON.stringify(rawConfig)
|
||||
}).then(response => response.json())
|
||||
.then((data) => console.log(data));
|
||||
});
|
||||
});
|
||||
|
||||
/**
|
||||
* The click handler for the Regenerate button.
|
||||
*/
|
||||
regenerateButton.addEventListener("click", (event) => {
|
||||
event.preventDefault();
|
||||
regenerateButton.style.cursor = "progress";
|
||||
regenerateButton.disabled = true;
|
||||
fetch("/regenerate")
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
regenerateButton.style.cursor = "pointer";
|
||||
regenerateButton.disabled = false;
|
||||
console.log(data);
|
||||
});
|
||||
})
|
||||
|
||||
/**
|
||||
* Adds config elements to the DOM representing the sub-components
|
||||
* of one of the fields in the raw config file.
|
||||
* @param {the parent element} element
|
||||
* @param {the data to be rendered for this element and its children} data
|
||||
*/
|
||||
function processChildren(element, data) {
|
||||
for (let key in data) {
|
||||
var child = document.createElement("div");
|
||||
child.id = key;
|
||||
child.className = "config-element";
|
||||
child.appendChild(document.createTextNode(key + ": "));
|
||||
if (data[key] === Object(data[key]) && !Array.isArray(data[key])) {
|
||||
child.className+=" config-title";
|
||||
processChildren(child, data[key]);
|
||||
} else {
|
||||
child.appendChild(createValueNode(data, key));
|
||||
}
|
||||
element.appendChild(child);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Takes an element, and replaces it with an editable
|
||||
* element with the same data in place.
|
||||
* @param {the original element to be replaced} original
|
||||
* @param {the source data to be rendered for the new element} data
|
||||
* @param {the key for this input in the source data} key
|
||||
*/
|
||||
function makeElementEditable(original, data, key) {
|
||||
original.addEventListener("click", () => {
|
||||
var inputNewText = document.createElement("input");
|
||||
inputNewText.type = "text";
|
||||
inputNewText.className = "config-element-edit";
|
||||
inputNewText.value = (original.textContent == emptyValueDefault) ? "" : original.textContent;
|
||||
fixInputOnFocusOut(inputNewText, data, key);
|
||||
original.parentNode.replaceChild(inputNewText, original);
|
||||
inputNewText.focus();
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a node corresponding to the value of a config element.
|
||||
* @param {the source data} data
|
||||
* @param {the key corresponding to this node's data} key
|
||||
* @returns A new element which corresponds to the value in some field.
|
||||
*/
|
||||
function createValueNode(data, key) {
|
||||
var valueElement = document.createElement("span");
|
||||
valueElement.className = "config-element-value";
|
||||
valueElement.textContent = !data[key] ? emptyValueDefault : data[key];
|
||||
makeElementEditable(valueElement, data, key);
|
||||
return valueElement;
|
||||
}
|
||||
|
||||
/**
|
||||
* Replaces an existing input element with an element with the same data, which is not an input.
|
||||
* If the input data for this element was changed, update the corresponding data in the raw config.
|
||||
* @param {the original element to be replaced} original
|
||||
* @param {the source data} data
|
||||
* @param {the key corresponding to this node's data} key
|
||||
*/
|
||||
function fixInputOnFocusOut(original, data, key) {
|
||||
original.addEventListener("blur", () => {
|
||||
data[key] = (original.value != emptyValueDefault) ? original.value : "";
|
||||
original.parentNode.replaceChild(createValueNode(data, key), original);
|
||||
})
|
||||
}
|
29
views/style.css
Normal file
29
views/style.css
Normal file
|
@ -0,0 +1,29 @@
|
|||
:root {
|
||||
--primary-color: #ffffff;
|
||||
--bold-color: #2073ee;
|
||||
--complementary-color: #124408;
|
||||
--accent-color-0: #57f0b5;
|
||||
}
|
||||
|
||||
input[type=text] {
|
||||
width: 40%;
|
||||
}
|
||||
|
||||
div.config-element {
|
||||
color: var(--bold-color);
|
||||
margin: 8px;
|
||||
}
|
||||
|
||||
div.config-title {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
span.config-element-value {
|
||||
color: var(--complementary-color);
|
||||
font-weight: normal;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
button {
|
||||
cursor: pointer;
|
||||
}
|
Loading…
Reference in a new issue