mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Merge pull request #18 from debanjum/deb/save-models-to-disk-on-first-run
Save Search Models to Disk on First Run ## Why - Improve application startup time - Startup application and perform semantic search even if user offline - Use search model config in YAML file for all search types (asymmetric, symmetric, image) ## Details - Load search models from disk when available - Use search model config specified in YAML file - Add search config for Symmetric Search used by Ledger/Beancount transaction search
This commit is contained in:
commit
ed7c2901f5
12 changed files with 183 additions and 75 deletions
|
@ -24,12 +24,19 @@ content-type:
|
|||
embeddings-file: "tests/data/.song_embeddings.pt"
|
||||
|
||||
search-type:
|
||||
symmetric:
|
||||
encoder: "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
||||
cross-encoder: "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||
model_directory: "tests/data/.symmetric"
|
||||
|
||||
asymmetric:
|
||||
encoder: "sentence-transformers/msmarco-MiniLM-L-6-v3"
|
||||
cross-encoder: "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||
model_directory: "tests/data/.asymmetric"
|
||||
|
||||
image:
|
||||
encoder: "clip-ViT-B-32"
|
||||
model_directory: "tests/data/.image_encoder"
|
||||
|
||||
processor:
|
||||
conversation:
|
||||
|
|
|
@ -130,22 +130,22 @@ def initialize_search(config: FullConfig, regenerate: bool, t: SearchType = None
|
|||
# Initialize Org Notes Search
|
||||
if (t == SearchType.Notes or t == None) and config.content_type.org:
|
||||
# Extract Entries, Generate Notes Embeddings
|
||||
model.notes_search = asymmetric.setup(config.content_type.org, regenerate=regenerate, verbose=verbose)
|
||||
model.notes_search = asymmetric.setup(config.content_type.org, search_config=config.search_type.asymmetric, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Org Music Search
|
||||
if (t == SearchType.Music or t == None) and config.content_type.music:
|
||||
# Extract Entries, Generate Music Embeddings
|
||||
model.music_search = asymmetric.setup(config.content_type.music, regenerate=regenerate, verbose=verbose)
|
||||
model.music_search = asymmetric.setup(config.content_type.music, search_config=config.search_type.asymmetric, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Ledger Search
|
||||
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
|
||||
# Extract Entries, Generate Ledger Embeddings
|
||||
model.ledger_search = symmetric_ledger.setup(config.content_type.ledger, regenerate=regenerate, verbose=verbose)
|
||||
model.ledger_search = symmetric_ledger.setup(config.content_type.ledger, search_config=config.search_type.symmetric, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Image Search
|
||||
if (t == SearchType.Image or t == None) and config.content_type.image:
|
||||
# Extract Entries, Generate Image Embeddings
|
||||
model.image_search = image_search.setup(config.content_type.image, regenerate=regenerate, verbose=verbose)
|
||||
model.image_search = image_search.setup(config.content_type.image, search_config=config.search_type.image, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return model
|
||||
|
||||
|
|
|
@ -12,18 +12,31 @@ import torch
|
|||
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path, load_model
|
||||
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfig
|
||||
from src.utils.rawconfig import AsymmetricConfig, TextSearchConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
def initialize_model(search_config: AsymmetricConfig):
|
||||
"Initialize model for assymetric semantic search. That is, where query smaller than results"
|
||||
torch.set_num_threads(4)
|
||||
bi_encoder = SentenceTransformer('sentence-transformers/msmarco-MiniLM-L-6-v3') # The bi-encoder encodes all entries to use for semantic search
|
||||
top_k = 30 # Number of entries we want to retrieve with the bi-encoder
|
||||
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') # The cross-encoder re-ranks the results to improve quality
|
||||
|
||||
# Number of entries we want to retrieve with the bi-encoder
|
||||
top_k = 30
|
||||
|
||||
# The bi-encoder encodes all entries to use for semantic search
|
||||
bi_encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.encoder,
|
||||
model_type = SentenceTransformer)
|
||||
|
||||
# The cross-encoder re-ranks the results to improve quality
|
||||
cross_encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.cross_encoder,
|
||||
model_type = CrossEncoder)
|
||||
|
||||
return bi_encoder, cross_encoder, top_k
|
||||
|
||||
|
||||
|
@ -149,9 +162,9 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool=False) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfig, search_config: AsymmetricConfig, regenerate: bool, verbose: bool=False) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
bi_encoder, cross_encoder, top_k = initialize_model(search_config)
|
||||
|
||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||
|
|
|
@ -10,16 +10,22 @@ from tqdm import trange
|
|||
import torch
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import resolve_absolute_path
|
||||
from src.utils.helpers import resolve_absolute_path, load_model
|
||||
import src.utils.exiftool as exiftool
|
||||
from src.utils.config import ImageSearchModel
|
||||
from src.utils.rawconfig import ImageSearchConfig
|
||||
from src.utils.rawconfig import ImageSearchConfig, ImageSearchTypeConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
def initialize_model(search_config: ImageSearchTypeConfig):
|
||||
# Initialize Model
|
||||
torch.set_num_threads(4)
|
||||
encoder = SentenceTransformer('sentence-transformers/clip-ViT-B-32') #Load the CLIP model
|
||||
|
||||
# Load the CLIP model
|
||||
encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.encoder,
|
||||
model_type = SentenceTransformer)
|
||||
|
||||
return encoder
|
||||
|
||||
|
||||
|
@ -154,9 +160,9 @@ def collate_results(hits, image_names, image_directory, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: ImageSearchConfig, regenerate: bool, verbose: bool=False) -> ImageSearchModel:
|
||||
def setup(config: ImageSearchConfig, search_config: ImageSearchTypeConfig, regenerate: bool, verbose: bool=False) -> ImageSearchModel:
|
||||
# Initialize Model
|
||||
encoder = initialize_model()
|
||||
encoder = initialize_model(search_config)
|
||||
|
||||
# Extract Entries
|
||||
image_directory = resolve_absolute_path(config.input_directory, strict=True)
|
||||
|
|
|
@ -10,18 +10,31 @@ import torch
|
|||
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path, load_model
|
||||
from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfig
|
||||
from src.utils.rawconfig import SymmetricConfig, TextSearchConfig
|
||||
|
||||
|
||||
def initialize_model():
|
||||
def initialize_model(search_config: SymmetricConfig):
|
||||
"Initialize model for symmetric semantic search. That is, where query of similar size to results"
|
||||
torch.set_num_threads(4)
|
||||
bi_encoder = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') # The encoder encodes all entries to use for semantic search
|
||||
top_k = 30 # Number of entries we want to retrieve with the bi-encoder
|
||||
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') # The cross-encoder re-ranks the results to improve quality
|
||||
|
||||
# Number of entries we want to retrieve with the bi-encoder
|
||||
top_k = 30
|
||||
|
||||
# The bi-encoder encodes all entries to use for semantic search
|
||||
bi_encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.encoder,
|
||||
model_type = SentenceTransformer)
|
||||
|
||||
# The cross-encoder re-ranks the results to improve quality
|
||||
cross_encoder = load_model(
|
||||
model_dir = search_config.model_directory,
|
||||
model_name = search_config.cross_encoder,
|
||||
model_type = CrossEncoder)
|
||||
|
||||
return bi_encoder, cross_encoder, top_k
|
||||
|
||||
|
||||
|
@ -141,9 +154,9 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfig, search_config: SymmetricConfig, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
bi_encoder, cross_encoder, top_k = initialize_model(search_config)
|
||||
|
||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||
|
|
|
@ -77,14 +77,22 @@ default_config = {
|
|||
},
|
||||
'search-type':
|
||||
{
|
||||
'asymmetric':
|
||||
'symmetric':
|
||||
{
|
||||
'encoder': "sentence-transformers/paraphrase-MiniLM-L6-v2",
|
||||
'cross-encoder': "cross-encoder/ms-marco-MiniLM-L-6-v2",
|
||||
'model_directory': None
|
||||
},
|
||||
'asymmetric':
|
||||
{
|
||||
'encoder': "sentence-transformers/msmarco-MiniLM-L-6-v3",
|
||||
'cross-encoder': "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||
'cross-encoder': "cross-encoder/ms-marco-MiniLM-L-6-v2",
|
||||
'model_directory': None
|
||||
},
|
||||
'image':
|
||||
{
|
||||
'encoder': "clip-ViT-B-32"
|
||||
'encoder': "clip-ViT-B-32",
|
||||
'model_directory': None
|
||||
},
|
||||
},
|
||||
'processor':
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# Standard Packages
|
||||
import pathlib
|
||||
from os.path import join
|
||||
|
||||
|
||||
def is_none_or_empty(item):
|
||||
|
@ -32,3 +34,20 @@ def merge_dicts(priority_dict, default_dict):
|
|||
if k not in priority_dict:
|
||||
merged_dict[k] = default_dict[k]
|
||||
return merged_dict
|
||||
|
||||
|
||||
def load_model(model_name, model_dir, model_type):
|
||||
"Load model from disk or huggingface"
|
||||
# Construct model path
|
||||
model_path = join(model_dir, model_name.replace("/", "_")) if model_dir is not None else None
|
||||
|
||||
# Load model from model_path if it exists there
|
||||
if model_path is not None and resolve_absolute_path(model_path).exists():
|
||||
model = model_type(get_absolute_path(model_path))
|
||||
# Else load the model from the model_name
|
||||
else:
|
||||
model = model_type(model_name)
|
||||
if model_path is not None:
|
||||
model.save(model_path)
|
||||
|
||||
return model
|
|
@ -37,15 +37,23 @@ class ContentTypeConfig(ConfigBase):
|
|||
image: Optional[ImageSearchConfig]
|
||||
music: Optional[TextSearchConfig]
|
||||
|
||||
class SymmetricConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
cross_encoder: Optional[str]
|
||||
model_directory: Optional[Path]
|
||||
|
||||
class AsymmetricConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
cross_encoder: Optional[str]
|
||||
model_directory: Optional[Path]
|
||||
|
||||
class ImageSearchTypeConfig(ConfigBase):
|
||||
encoder: Optional[str]
|
||||
model_directory: Optional[Path]
|
||||
|
||||
class SearchTypeConfig(ConfigBase):
|
||||
asymmetric: Optional[AsymmetricConfig]
|
||||
symmetric: Optional[SymmetricConfig]
|
||||
image: Optional[ImageSearchTypeConfig]
|
||||
|
||||
class ConversationProcessorConfig(ConfigBase):
|
||||
|
|
|
@ -1,51 +1,78 @@
|
|||
# Standard Packages
|
||||
import pytest
|
||||
from pathlib import Path
|
||||
from src import search_type
|
||||
|
||||
# Internal Packages
|
||||
from src.search_type import asymmetric, image_search
|
||||
from src.utils.rawconfig import ContentTypeConfig, ImageSearchConfig, TextSearchConfig
|
||||
from src.utils.rawconfig import AsymmetricConfig, ContentTypeConfig, ImageSearchConfig, ImageSearchTypeConfig, SearchTypeConfig, SymmetricConfig, TextSearchConfig
|
||||
|
||||
|
||||
@pytest.fixture(scope='session')
|
||||
def model_dir(tmp_path_factory):
|
||||
def search_config(tmp_path_factory):
|
||||
model_dir = tmp_path_factory.mktemp('data')
|
||||
|
||||
search_config = SearchTypeConfig()
|
||||
|
||||
search_config.asymmetric = SymmetricConfig(
|
||||
encoder = "sentence-transformers/paraphrase-MiniLM-L6-v2",
|
||||
cross_encoder = "cross-encoder/ms-marco-MiniLM-L-6-v2",
|
||||
model_directory = model_dir
|
||||
)
|
||||
|
||||
search_config.asymmetric = AsymmetricConfig(
|
||||
encoder = "sentence-transformers/msmarco-MiniLM-L-6-v3",
|
||||
cross_encoder = "cross-encoder/ms-marco-MiniLM-L-6-v2",
|
||||
model_directory = model_dir
|
||||
)
|
||||
|
||||
search_config.image = ImageSearchTypeConfig(
|
||||
encoder = "clip-ViT-B-32",
|
||||
model_directory = model_dir
|
||||
)
|
||||
|
||||
return search_config
|
||||
|
||||
|
||||
@pytest.fixture(scope='session')
|
||||
def model_dir(search_config):
|
||||
model_dir = search_config.asymmetric.model_directory
|
||||
|
||||
# Generate Image Embeddings from Test Images
|
||||
search_config = ContentTypeConfig()
|
||||
search_config.image = ImageSearchConfig(
|
||||
content_config = ContentTypeConfig()
|
||||
content_config.image = ImageSearchConfig(
|
||||
input_directory = 'tests/data',
|
||||
embeddings_file = model_dir.joinpath('.image_embeddings.pt'),
|
||||
batch_size = 10,
|
||||
use_xmp_metadata = False)
|
||||
|
||||
image_search.setup(search_config.image, regenerate=False, verbose=True)
|
||||
image_search.setup(content_config.image, search_config.image, regenerate=False, verbose=True)
|
||||
|
||||
# Generate Notes Embeddings from Test Notes
|
||||
search_config.org = TextSearchConfig(
|
||||
content_config.org = TextSearchConfig(
|
||||
input_files = ['tests/data/main_readme.org', 'tests/data/interface_emacs_readme.org'],
|
||||
input_filter = None,
|
||||
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'))
|
||||
|
||||
asymmetric.setup(search_config.org, regenerate=False, verbose=True)
|
||||
asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=False, verbose=True)
|
||||
|
||||
return model_dir
|
||||
|
||||
|
||||
@pytest.fixture(scope='session')
|
||||
def search_config(model_dir):
|
||||
search_config = ContentTypeConfig()
|
||||
search_config.org = TextSearchConfig(
|
||||
def content_config(model_dir):
|
||||
content_config = ContentTypeConfig()
|
||||
content_config.org = TextSearchConfig(
|
||||
input_files = ['tests/data/main_readme.org', 'tests/data/interface_emacs_readme.org'],
|
||||
input_filter = None,
|
||||
compressed_jsonl = model_dir.joinpath('.notes.jsonl.gz'),
|
||||
embeddings_file = model_dir.joinpath('.note_embeddings.pt'))
|
||||
|
||||
search_config.image = ImageSearchConfig(
|
||||
content_config.image = ImageSearchConfig(
|
||||
input_directory = 'tests/data',
|
||||
embeddings_file = 'tests/data/.image_embeddings.pt',
|
||||
embeddings_file = model_dir.joinpath('.image_embeddings.pt'),
|
||||
batch_size = 10,
|
||||
use_xmp_metadata = False)
|
||||
|
||||
return search_config
|
||||
return content_config
|
||||
|
|
|
@ -1,14 +1,15 @@
|
|||
# Internal Packages
|
||||
from src.main import model
|
||||
from src.search_type import asymmetric
|
||||
from src.utils.rawconfig import ContentTypeConfig, SearchTypeConfig
|
||||
|
||||
|
||||
# Test
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_asymmetric_setup(search_config):
|
||||
def test_asymmetric_setup(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Act
|
||||
# Regenerate notes embeddings during asymmetric setup
|
||||
notes_model = asymmetric.setup(search_config.org, regenerate=True)
|
||||
notes_model = asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=True)
|
||||
|
||||
# Assert
|
||||
assert len(notes_model.entries) == 10
|
||||
|
@ -16,9 +17,9 @@ def test_asymmetric_setup(search_config):
|
|||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_asymmetric_search(search_config):
|
||||
def test_asymmetric_search(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||
model.notes_search = asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=False)
|
||||
query = "How to git install application?"
|
||||
|
||||
# Act
|
||||
|
|
|
@ -9,7 +9,7 @@ import pytest
|
|||
from src.main import app, model, config
|
||||
from src.search_type import asymmetric, image_search
|
||||
from src.utils.helpers import resolve_absolute_path
|
||||
from src.utils.rawconfig import ContentTypeConfig
|
||||
from src.utils.rawconfig import ContentTypeConfig, SearchTypeConfig
|
||||
|
||||
|
||||
# Arrange
|
||||
|
@ -18,55 +18,60 @@ client = TestClient(app)
|
|||
|
||||
# Test
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_search_with_invalid_search_type():
|
||||
def test_search_with_invalid_content_type():
|
||||
# Arrange
|
||||
user_query = "How to call semantic search from Emacs?"
|
||||
|
||||
# Act
|
||||
response = client.get(f"/search?q={user_query}&t=invalid_search_type")
|
||||
response = client.get(f"/search?q={user_query}&t=invalid_content_type")
|
||||
|
||||
# Assert
|
||||
assert response.status_code == 422
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_search_with_valid_search_type(search_config: ContentTypeConfig):
|
||||
def test_search_with_valid_content_type(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
config.content_type = search_config
|
||||
config.content_type = content_config
|
||||
config.search_type = search_config
|
||||
|
||||
# config.content_type.image = search_config.image
|
||||
for search_type in ["notes", "ledger", "music", "image"]:
|
||||
for content_type in ["notes", "ledger", "music", "image"]:
|
||||
# Act
|
||||
response = client.get(f"/search?q=random&t={search_type}")
|
||||
response = client.get(f"/search?q=random&t={content_type}")
|
||||
# Assert
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_regenerate_with_invalid_search_type():
|
||||
def test_regenerate_with_invalid_content_type():
|
||||
# Act
|
||||
response = client.get(f"/regenerate?t=invalid_search_type")
|
||||
response = client.get(f"/regenerate?t=invalid_content_type")
|
||||
|
||||
# Assert
|
||||
assert response.status_code == 422
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_regenerate_with_valid_search_type(search_config: ContentTypeConfig):
|
||||
def test_regenerate_with_valid_content_type(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
config.content_type = search_config
|
||||
for search_type in ["notes", "ledger", "music", "image"]:
|
||||
config.content_type = content_config
|
||||
config.search_type = search_config
|
||||
|
||||
for content_type in ["notes", "ledger", "music", "image"]:
|
||||
# Act
|
||||
response = client.get(f"/regenerate?t={search_type}")
|
||||
response = client.get(f"/regenerate?t={content_type}")
|
||||
# Assert
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@pytest.mark.skip(reason="Flaky test. Search doesn't always return expected image path.")
|
||||
def test_image_search(search_config: ContentTypeConfig):
|
||||
def test_image_search(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
config.content_type = search_config
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=False)
|
||||
config.content_type = content_config
|
||||
config.search_type = search_config
|
||||
model.image_search = image_search.setup(content_config.image, search_config.image, regenerate=False)
|
||||
query_expected_image_pairs = [("brown kitten next to fallen plant", "kitten_park.jpg"),
|
||||
("a horse and dog on a leash", "horse_dog.jpg"),
|
||||
("A guinea pig eating grass", "guineapig_grass.jpg")]
|
||||
|
@ -78,16 +83,16 @@ def test_image_search(search_config: ContentTypeConfig):
|
|||
# Assert
|
||||
assert response.status_code == 200
|
||||
actual_image = Path(response.json()[0]["Entry"])
|
||||
expected_image = resolve_absolute_path(search_config.image.input_directory.joinpath(expected_image_name))
|
||||
expected_image = resolve_absolute_path(content_config.image.input_directory.joinpath(expected_image_name))
|
||||
|
||||
# Assert
|
||||
assert expected_image == actual_image
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_notes_search(search_config: ContentTypeConfig):
|
||||
def test_notes_search(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||
model.notes_search = asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=False)
|
||||
user_query = "How to git install application?"
|
||||
|
||||
# Act
|
||||
|
@ -101,9 +106,9 @@ def test_notes_search(search_config: ContentTypeConfig):
|
|||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_notes_search_with_include_filter(search_config: ContentTypeConfig):
|
||||
def test_notes_search_with_include_filter(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||
model.notes_search = asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=False)
|
||||
user_query = "How to git install application? +Emacs"
|
||||
|
||||
# Act
|
||||
|
@ -117,9 +122,9 @@ def test_notes_search_with_include_filter(search_config: ContentTypeConfig):
|
|||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_notes_search_with_exclude_filter(search_config: ContentTypeConfig):
|
||||
def test_notes_search_with_exclude_filter(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
model.notes_search = asymmetric.setup(search_config.org, regenerate=False)
|
||||
model.notes_search = asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=False)
|
||||
user_query = "How to git install application? -clone"
|
||||
|
||||
# Act
|
||||
|
|
|
@ -5,14 +5,15 @@ import pytest
|
|||
from src.main import model
|
||||
from src.search_type import image_search
|
||||
from src.utils.helpers import resolve_absolute_path
|
||||
from src.utils.rawconfig import ContentTypeConfig, SearchTypeConfig
|
||||
|
||||
|
||||
# Test
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_image_search_setup(search_config):
|
||||
def test_image_search_setup(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Act
|
||||
# Regenerate image search embeddings during image setup
|
||||
image_search_model = image_search.setup(search_config.image, regenerate=True)
|
||||
image_search_model = image_search.setup(content_config.image, search_config.image, regenerate=True)
|
||||
|
||||
# Assert
|
||||
assert len(image_search_model.image_names) == 3
|
||||
|
@ -21,9 +22,9 @@ def test_image_search_setup(search_config):
|
|||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
@pytest.mark.skip(reason="results inconsistent currently")
|
||||
def test_image_search(search_config):
|
||||
def test_image_search(content_config: ContentTypeConfig, search_config: SearchTypeConfig):
|
||||
# Arrange
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=False)
|
||||
model.image_search = image_search.setup(content_config.image, search_config.image, regenerate=False)
|
||||
query_expected_image_pairs = [("brown kitten next to plant", "kitten_park.jpg"),
|
||||
("horse and dog in a farm", "horse_dog.jpg"),
|
||||
("A guinea pig eating grass", "guineapig_grass.jpg")]
|
||||
|
@ -38,11 +39,11 @@ def test_image_search(search_config):
|
|||
results = image_search.collate_results(
|
||||
hits,
|
||||
model.image_search.image_names,
|
||||
search_config.image.input_directory,
|
||||
content_config.image.input_directory,
|
||||
count=1)
|
||||
|
||||
actual_image = results[0]["Entry"]
|
||||
expected_image = resolve_absolute_path(search_config.image.input_directory.joinpath(expected_image_name))
|
||||
expected_image = resolve_absolute_path(content_config.image.input_directory.joinpath(expected_image_name))
|
||||
|
||||
# Assert
|
||||
assert expected_image == actual_image
|
||||
|
|
Loading…
Reference in a new issue