mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Move message truncation logic into a separate function. Add unit tests with factory boy.
This commit is contained in:
parent
5f4223efb4
commit
f65ff9815d
3 changed files with 98 additions and 8 deletions
|
@ -56,6 +56,8 @@ dependencies = [
|
|||
"aiohttp == 3.8.4",
|
||||
"langchain >= 0.0.187",
|
||||
"pypdf >= 3.9.0",
|
||||
"factory-boy==3.2.1",
|
||||
"Faker==18.10.1"
|
||||
]
|
||||
dynamic = ["version"]
|
||||
|
||||
|
|
|
@ -97,23 +97,33 @@ def generate_chatml_messages_with_context(
|
|||
messages = user_chatml_message + rest_backnforths + system_chatml_message
|
||||
|
||||
# Truncate oldest messages from conversation history until under max supported prompt size by model
|
||||
messages = truncate_message(messages, max_prompt_size[model_name], model_name)
|
||||
|
||||
# Return message in chronological order
|
||||
return messages[::-1]
|
||||
|
||||
def truncate_message(messages, max_prompt_size, model_name):
|
||||
"""Truncate messages to fit within max prompt size supported by model"""
|
||||
encoder = tiktoken.encoding_for_model(model_name)
|
||||
tokens = sum([len(encoder.encode(message.content)) for message in messages])
|
||||
while tokens > max_prompt_size[model_name] and len(messages) > 1:
|
||||
logger.info(f"num tokens: {tokens}")
|
||||
while tokens > max_prompt_size and len(messages) > 1:
|
||||
messages.pop()
|
||||
tokens = sum([len(encoder.encode(message.content)) for message in messages])
|
||||
|
||||
# Truncate last message if still over max supported prompt size by model
|
||||
if tokens > max_prompt_size[model_name]:
|
||||
last_message = messages[-1]
|
||||
truncated_message = encoder.decode(encoder.encode(last_message.content))
|
||||
if tokens > max_prompt_size:
|
||||
last_message = '\n'.join(messages[-1].content.split("\n")[:-1])
|
||||
original_question = '\n'.join(messages[-1].content.split("\n")[-1:])
|
||||
original_question_tokens = len(encoder.encode(original_question))
|
||||
remaining_tokens = max_prompt_size - original_question_tokens
|
||||
truncated_message = encoder.decode(encoder.encode(last_message)[:remaining_tokens]).strip()
|
||||
logger.debug(
|
||||
f"Truncate last message to fit within max prompt size of {max_prompt_size[model_name]} supported by {model_name} model:\n {truncated_message}"
|
||||
f"Truncate last message to fit within max prompt size of {max_prompt_size} supported by {model_name} model:\n {truncated_message}"
|
||||
)
|
||||
messages = [ChatMessage(content=truncated_message, role=last_message.role)]
|
||||
messages = [ChatMessage(content=truncated_message + original_question, role=messages[-1].role)]
|
||||
|
||||
# Return message in chronological order
|
||||
return messages[::-1]
|
||||
return messages
|
||||
|
||||
|
||||
def reciprocal_conversation_to_chatml(message_pair):
|
||||
|
|
78
tests/test_conversation_utils.py
Normal file
78
tests/test_conversation_utils.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
from khoj.processor.conversation import utils
|
||||
from langchain.schema import ChatMessage
|
||||
import factory
|
||||
import logging
|
||||
import tiktoken
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
class ChatMessageFactory(factory.Factory):
|
||||
class Meta:
|
||||
model = ChatMessage
|
||||
|
||||
content = factory.Faker('paragraph')
|
||||
role = factory.Faker('name')
|
||||
|
||||
class TestTruncateMessage:
|
||||
max_prompt_size = 4096
|
||||
model_name = 'gpt-3.5-turbo'
|
||||
encoder = tiktoken.encoding_for_model(model_name)
|
||||
|
||||
def test_truncate_message_all_small(self):
|
||||
chat_messages = ChatMessageFactory.build_batch(500)
|
||||
assert len(chat_messages) == 500
|
||||
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
|
||||
assert tokens > self.max_prompt_size
|
||||
|
||||
prompt = utils.truncate_message(chat_messages, self.max_prompt_size, self.model_name)
|
||||
|
||||
# The original object has been modified. Verify certain properties
|
||||
assert len(chat_messages) < 500
|
||||
assert len(chat_messages) > 1
|
||||
assert prompt == chat_messages
|
||||
|
||||
tokens = sum([len(self.encoder.encode(message.content)) for message in prompt])
|
||||
assert tokens <= self.max_prompt_size
|
||||
|
||||
def test_truncate_message_first_large(self):
|
||||
chat_messages = ChatMessageFactory.build_batch(25)
|
||||
big_chat_message = ChatMessageFactory.build(content=factory.Faker('paragraph', nb_sentences=1000))
|
||||
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
|
||||
copy_big_chat_message = big_chat_message.copy()
|
||||
chat_messages.insert(0, big_chat_message)
|
||||
assert len(chat_messages) == 26
|
||||
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
|
||||
assert tokens > self.max_prompt_size
|
||||
|
||||
prompt = utils.truncate_message(chat_messages, self.max_prompt_size, self.model_name)
|
||||
|
||||
# The original object has been modified. Verify certain properties
|
||||
assert len(chat_messages) < 26
|
||||
assert len(chat_messages) == 1
|
||||
assert prompt[0] != copy_big_chat_message
|
||||
|
||||
tokens = sum([len(self.encoder.encode(message.content)) for message in prompt])
|
||||
assert tokens <= self.max_prompt_size
|
||||
|
||||
def test_truncate_message_last_large(self):
|
||||
chat_messages = ChatMessageFactory.build_batch(25)
|
||||
big_chat_message = ChatMessageFactory.build(content=factory.Faker('paragraph', nb_sentences=1000))
|
||||
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
|
||||
copy_big_chat_message = big_chat_message.copy()
|
||||
|
||||
chat_messages.append(big_chat_message)
|
||||
assert len(chat_messages) == 26
|
||||
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
|
||||
assert tokens > self.max_prompt_size
|
||||
|
||||
prompt = utils.truncate_message(chat_messages, self.max_prompt_size, self.model_name)
|
||||
|
||||
# The original object has been modified. Verify certain properties
|
||||
assert len(chat_messages) < 26
|
||||
assert len(chat_messages) > 1
|
||||
assert prompt[0] != copy_big_chat_message
|
||||
|
||||
tokens = sum([len(self.encoder.encode(message.content)) for message in prompt])
|
||||
assert tokens < self.max_prompt_size
|
||||
|
Loading…
Reference in a new issue