### Search Modal Enhancements
- b52cd85 Allow Reranking results using Keybinding from Khoj Search Modal
- 580f4ac Add hints to Modal for available Keybindings
- da49ea2 Add placeholder text to modal in Khoj Obsidian plugin
### Handle Failure to Connect to Khoj Backend
Load plugin but warn on failure to connect to Khoj backend
- f046a95 Track connectedToBackend as a setting. Use it across obsidian plugin to:
- Disable command if not connected to backend
- Trigger warning notice on clicking Khoj ribbon if not connected to backend
- Show warning at top of Khoj Obsidian plugin settings pane
- 768e874 Load obsidian plugin even if fail to connect to backend but show warning
- Allows user to see reason for failure to try resolve it
- Allows user to update Khoj URL settings to point to URL of Khoj server
### Miscellaneous
- 7991ab7 Add button in Obsidian plugin settings to force re-indexing your vault
- Useful if index gets corrupted
- Display warning at top of khoj obsidian plugin settings
- Make search command available only if connected to backend
- Show warning notice on clicking khoj search ribbon button
- Call saveData after configureKhojBackend to ensure
connnectedToBackend setting saved after being (potentially) updated
in configureKhojBackend function
- Previously the plugin would not load if cannot connect to Khoj backend
- Silently failing to load with no reason provided is not helpful
- Load plugin to allow user to fix the Khoj URL in their plugin setting
- Show reason for khoj plugin not working. More helpful than failing silently
Use the timer context manager in all places where code was being timed
- Benefits
- Deduplicate timing code scattered across codebase.
- Provides single place to manage perf timing code
- Use consistent timing log patterns
The query method had become too big.
Extract out filter, score, sort and deduplicate logic used by
text_search.query into separate methods.
This should improve readabilty of code.
- Changes
- Fix method signatures of BaseFilter subclasses.
Else typing information isn't translating to them
- Explicitly pass `entries: list[Entry]' as arg to `load' method
- Fix type of `raw_entries' arg to `apply' method
to list[Entry] from list[str]
- Rename `raw_entries' arg to `apply' method to `entries'
- Fix `raw_query' arg used in `apply' method of subclasses to `query'
- Set type of entries, corpus_embeddings in TextSearchModel
- Verification
Ran `mypy --config-file .mypy.ini src' to verify typing
- `torch.Tensor' is apparently a legacy tensor constructor
- Using that to create tensor on MPS devices throws error:
RuntimeError: legacy constructor expects device type: cpu but device type: mps was passed
- `torch.tensor' can handle creating tensors on Mac GPU (MPS) fine
This is unlike the more general chat API that combines summarization
of top search result and conversing with the OpenAI model
This should give faster summary results. As no intent categorization
API call required
- Use latest davinci model for tests
- Wrap prompt in triple quotes to improve legibilty
- `understand' method returns dictionary instead of string. Fix its test
- Fix prompt for new model to pass `chat_with_history' test
- Default to using `text-davinci-003' if conversation model not
explicitly configured by user. Stop using the older `davinci' and
`davinci-instruct' models
- Use `model' instead of `engine' as parameter.
Usage of `engine' parameter in OpenAI API is deprecated
- 2fe37a0 Make type of encoder to use for embeddings configurable via `khoj.yml'
- Previously `encoder_type' was set in the setup code of search_type
- All *encoders* were of type `SentenceTransformer'
- All *cross_encoders* were of type `CrossEncoder'
- Now the `encoder_type' can be configured via the new `encoder_type' field
in `TextSearchConfig' under `search_type` in `khoj.yml'
- All the specified `encoder-type' class needs is an `encode' method
that takes entries and returns embedding vectors
- 826f9dc Drop long words from compiled entries to be within max token limit of models
Long words (>500 characters) provide less useful context to models.
Dropping very long words allow models to create better embeddings by
passing more of the useful context from the entry to the model
- c0ae8ee Allow using OpenAI models for search in Khoj
To use OpenAI models for search in Khoj, in `~/.khoj/khoj.yml'
1. Set `encoder' to name of an OpenAI model. E.g *text-embedding-ada-002*
2. Set `encoder-type' to *src.utils.models.OpenAI*
3. Set `model-directory` to *null*, as this is an online model and
cannot be stored on the file system
- Init processor before search to instantiate `openai_api_key'
from `khoj.yml'. The key is used to configure search with openai models
- To use OpenAI models for search in Khoj
- Set `encoder' to name of an OpenAI model. E.g text-embedding-ada-002
- Set `encoder-type' in `khoj.yml' to `src.utils.models.OpenAI'
- Set `model-directory' to `null', as online model cannot be stored on disk
Long words (>500 characters) provide less useful context to models.
Dropping very long words allow models to create better embeddings by
passing more of the useful context from the entry to the model
- Previously `model_type' was set in the setup of each `search_type'
- All encoders were of type `SentenceTransformer'
- All cross_encoders were of type `CrossEncoder'
- Now `encoder-type' can be configured via the new `encoder_type' field
in `TextSearchConfig' under `search-type` in `khoj.yml`.
- All the specified `encoder-type' class needs is an `encode' method
that takes entries and returns embedding vectors
- Ensure all tensors are on MPS device before doing operations across them
- Background
- GPU is used by default for Khoj on MacOS now
- Needed PyTorch > 1.13.0 on Macs to use GPU, which we do now
- MPS should speed up search and indexing on MacOS
Fix usage warning for unescaped single quote in `khoj.el' docstring.
Converts usage of '<text>' into `<text>' to use the correct quote forms in generated docs
⛔ Warning (comp): khoj.el:119:2: Warning: docstring has wrong usage of unescaped single quotes (use \= or different quoting)
⛔ Warning (comp): khoj.el:120:2: Warning: docstring has wrong usage of unescaped single quotes (use \= or different quoting)
⛔ Warning (comp): khoj.el:121:2: Warning: docstring has wrong usage of unescaped single quotes (use \= or different quoting)
⛔ Warning (comp): khoj.el:168:2: Warning: docstring has wrong usage of unescaped single quotes (use \= or different quoting)
### Plugin Features
- Search Obsidian notes using Khoj
*Provide Natural language search on your (markdown) notes in Obsidian Vault*
- Show search results as rendered Markdown
*Improve legibility of the results*
- Jump to selected note from search result in Khoj search modal
*Simplify seeing result within its original note context*
- Automatically configure khoj to index markdown files in current vault
*Reduce khoj setup steps for plugin users by using reasonable defaults*
- Code updates the markdown config in `khoj.yml` and triggers index update
- It can be configured by user in khoj plugin settings, if required
- Add Demo and detailed Readme for the Obsidian plugin
*Ease setup and usage. Give context about capabilities*
### Miscellaneous
- (Try) Keep a mono repo until the Khoj project is mature enough
to reduce maintainance burden
### Commits Details
- 0e39e0f Add details about the Khoj Obsidian plugin to the main Readme
- cd8b918 Add `manifest.json`, `versions.json` of Obsidian plugin to project root
- 66ccd0c Create Obsidian plugin for Khoj
- Add Khoj in Obsidian Demo
- Update Interfaces Screenshot to include Obsidian Plugin Screenshot
- Update .gitignore to ignore obsidian plugin ignorelist
Section the .gitignore for better readability
- Update the Setup, Usage instructions to include information about
the Obsidian plugin
- Obsidian provides limited support for plugins in larger repositories.
Currently, it does not have a way to specify the directory of a plugin
So it expects the plugins `manifest.json' and `versions.json' to be at
project root
- While this unnecessarily litters the codebase. It is the (current)
required tradeoff for keeping the core plugins in a mono repo
- Features
- Search using Khoj from within the Obsidian app
Allow Natural language search on your (markdown) notes in Obsidian Vault
- Show search results as rendered (instead of raw) Markdown
Improve legibility of the results
- Jump to selected note from search result in Khoj search modal
Simplify seeing result within its original note context
- Automatically configure khoj to index markdown files in current vault
Reduce khoj setup steps for plugin users by using reasonable defaults
- Code updates the markdown config in khoj.yml and triggers index update
- It can be configured by user in khoj plugin settings, if required
- Add Demo and detailed Readme for the Obsidian plugin
Ease setup and usage. Give context about capabilities
- Miscellaneous
- Trying keep a mono repo until the Khoj project is mature enough
to reduce maintainance burden