* Add support for gpt4all's falcon model as an additional conversation processor
- Update the UI pages to allow the user to point to the new endpoints for GPT
- Update the internal schemas to support both GPT4 models and OpenAI
- Add unit tests benchmarking some of the Falcon performance
* Add exc_info to include stack trace in error logs for text processors
* Pull shared functions into utils.py to be used across gpt4 and gpt
* Add migration for new processor conversation schema
* Skip GPT4All actor tests due to typing issues
* Fix Obsidian processor configuration in auto-configure flow
* Rename enable_local_llm to enable_offline_chat
Khoj will soon get a generic text indexing content type. This along
with a file filter should suffice for searching through Ledger
transactions, if required.
Having a specific content type for niche use-case like ledger isn't
useful. Removing unused content types will reduce khoj code to manage.
- Previously Khoj could only support Python upto 3.10 due to pytorch.
But lots of folks had python 3.11 installed by default on their machines.
This required installing python 3.10 and dealing with virtual envs.
With Torch >= 2.0.1 now able to support python 3.11, at least one
class of installation troubles for Khoj should drop. See
https://github.com/pytorch/pytorch/issues/86566 for reference
- Preliminary testing indicates using the new torch 2.x may reduce
search time by 25% (from 80ms to 60ms on Mac M1)
- Update Docs to not require mentioning python <=3.10 required
- Update Github test workflow to run khoj tests with python 3.11 too
The Llama_Hub Github plugin is fairly limited.
The Github Rest API is well supported and can easily be extended to
index commit messages, issues, discussions, PRs etc.
- Move completion and chat_completion into helper methods under utils.py
- Add retry with exponential backoff on OpenAI exceptions using
tenacity package. This is officially suggested and used by other
popular GPT based libraries
- Use tiktoken to count tokens for chat models
- Make conversation turns to add to prompt configurable via method
argument to generate_chatml_messages_with_context method
- Chat directors are broad agents.
- Chat directors orchestrate narrow actor agents to synthesize
final response for the user
- Agents are Prompts + ML Model
- Test Chat Director Capabilities
1. [X] Answer from retrieved notes
2. [X] Answer from chat history
3. [X] Answer general questions
4. [X] Carry out multi-turn conversation
5. [X] Say don't know when answer not in provided context
6. [X] Answers that require current date awareness
This test is expected to fail as the chat is not capable of doing
this without the Search actor. But the test allows assessing chat quality
7. [X] Date-aware aggregation across multiple different notes
This test is expected to fail as the chat is not capable of doing
this without the Search actor. But the test allows assessing chat quality
8. [X] Ask clarification questions if no unambiguous answer in provided context
9. [X] Retrieve answer from chat history beyond lookback window
This test is expected to fail as the chat director is not capable
of searching chat history yet. But the test allows assessing chat quality
10. [X] Retrieve context for answer using multiple independent
searches on knowledge base
This test is expected to fail as the chat is not capable of doing
this without the Search actor. But the test allows assessing chat quality
- Mark chat quality tests, register custom mark for chat quality
- Filter unhelpful deprecation warnings from within dateparser library
- Error if tests use unregistered marks
- Set context by either including last 2 chat messages from active
session or past 2 conversation summaries from conversation logs
- Set personality in system message
- Place personality system message before last completed back & forth
This may stop ChatGPT forgetting its personality as conversation progresses given:
- The conditioning based on system role messages is light
- If system message is too far back in conversation history, the
model may forget its personality conditioning
- If system message at end of conversation, the model can think its
the start of a new conversation
- Inserting the system message before last completed back & forth should
prevent ChatGPT from assuming its the start of a new conversation
while not losing personality conditioning from the system message
- Simplfy the Khoj Chat API to for now just answer from users notes
instead of trying to infer other potential interaction types.
- This is the default expected behavior from the feature anyway
- Use the compiled text of the top 2 search results for context
- Benefits of using ChatGPT
- Better model
- 1/10th the price
- No hand rolled prompt required to make GPT provide more chatty,
assistant type responses
- Remove unneeded type ignore for mps with the latest mypy
- Stop excluding PyQT desktop GUI code from MyPy checks
- Do not warn about unused ignores. Some issue with mypy giving
different errors in different environments (venv, system and pre-commit)
- Why
- pyprojects.toml is the python standards compliant config format
- allows collating python tooling configs into single standard file
- hatch(-ling) is a new lightweight build system for python packages
- Detailed Changes
- Replace setup.py, setuptools with pyproject.toml, hatchling for
khoj python config and build
- move pytest into optional development dependencies
- add more links to khoj in the project urls section
- add topic classifiers and keywords to find khoj package
- Delete setup.py, MANIFEST.in as moved to pyproject.toml based setup
- Update pypi workflow to set python package version in pyproject.toml