This can ease configuring khoj from the different interfaces
- Don't need to know all the (default) config used by khoj.
- Just get default config by calling the above API endpoint.
- Then modify desired portions and call POST /api/config/data to
configure khoj.
- Start khoj server (in non-GUI mode) without needing config file
already instantiated.
- But throw warning to configure khoj to use it
- This allows plugins to configure the app via the /config/data APIs
- To be used by the Khoj obsidian plugin to configure markdown content
in khoj
- c535953 Update index automatically in non GUI mode too
- 701d92e Lock the index before updating it via API or Scheduler
- 3b0783a Automate updating embeddings, search index on a hourly schedule
Resolves#106
- Poll scheduler every minute using threading.Timer
- Use 60 seconds polling interval to avoid fork bombing
- Schedule next via the same poll scheduler
- Allow clean program interrupt by running scheduler in daemon mode
- There are 3 paths to updating/setting the index (stored in state.model)
- App start
- API
- Scheduler
- Put all updates to the index behind a lock. As multiple updates path
that could (potentially) run at the same time (via API or Scheduler)
- Remove property drawer from test entry for max_words splitting test
- Property drawer is not required for the test
- Keep minimal test case to reduce chance for confusion
- Required because entries are now split by the max_word count supported
by the ML models
- This would now result in potentially duplicate hits, entries being
returned to user
- Do deduplication after ranking to get the top ranked deduplicated
results
- The instructions suggest installing khoj-assistant via pip install.
This installs the latest tagged/release version of khoj
- To match that version user should install khoj.el from MELPA stable
instead of MELPA
- Issue
ML Models truncate entries exceeding some max token limit.
This lowers the quality of search results
- Fix
Split entries by max tokens before indexing.
This should improve searching for content in longer entries.
- Miscellaneous
- Test method to split entries by max tokens
Update readme to ask user to install khoj.el from MELPA when a
pre-release version of the main khoj app is installed. Else install
khoj.el from MELPA Stable
- **Improve API Endpoints**
- ee65a4f Merge /reload, /regenerate into single /update API endpoint
- 9975497 Type the /search API response to better document the response schema
- 0521ea1 Put image score breakdown under `additional` field in search response
- **Formalize Intermediary Format to Index Text Content**
- 7e9298f Use new Text `Entry` class to track text entries in Intermediate Format
- 02d9440 Use Base `TextToJsonl` class to standardize `<text>_to_jsonl` processors
- **Modularize API router code**
- e42a38e Split router code into `web_client`, `api`, `api_beta` routers. Version Khoj API
- d292bdc Remove API versioning. Premature given current state of the codebase
- **Miscellaneous**
- c467df8 Setup `mypy` for static type checking
- 2c54813 Remove unused imports, `embeddings` variable from text search tests
- bf1ae038cb Get XMP metadata from image using `Pillow`. Remove `ExifTool` dependency
- Pillow library is already used in Khoj and it can extract XMP Metadata from Images
- Reduce unmaintained dependencies by using Pillow instead of Exiftool
- Pillow is much better maintained than my fork of the Exiftool python package
- c16ae9e344 Ignore *"Legacy way to download model"* warning for upstream dependency
- Reason
- All clients that currently consume the API are part of Khoj
- Any breaking API changes will be fixed in clients immediately
- So decoupling client from API is not required
- This removes the burden of maintaining muliple versions of the API
- Context
- The app maintains all text content in a standard, intermediate format
- The intermediate format was loaded, passed around as a dictionary
for easier, faster updates to the intermediate format schema initially
- The intermediate format is reasonably stable now, given it's usage
by all 3 text content types currently implemented
- Changes
- Concretize text entries into `Entries' class instead of using dictionaries
- Code is updated to load, pass around entries as `Entries' objects
instead of as dictionaries
- `text_search' and `text_to_jsonl' methods are annotated with
type hints for the new `Entries' type
- Code and Tests referencing entries are updated to use class style
access patterns instead of the previous dictionary access patterns
- Move `mark_entries_for_update' method into `TextToJsonl' base class
- This is a more natural location for the method as it is only
(to be) used by `text_to_jsonl' classes
- Avoid circular reference issues on importing `Entries' class
- Both Text, Image Search were already giving list of entry, score
- This change just concretizes this change and exposes this in the API
documentation (i.e OpenAPI, Swagger, Redocs)
- Split router.py into v1.0, beta and frontend (no-prefix) api modules
under new router package. Version tag in main.py via prefix
- Update frontends to use the versioned api endpoints
- Update tests to work with versioned api endpoints
- Update docs to mentioned, reference only versioned api endpoints
In my installation, it appears that `url-request-method` is sometimes set
globally to POST. Need to explicitly set it to ensure that GET is always
used as intended.
- Pass force=true to /update API to force regenerating index from
scratch
- Otherwise calls to the /update API endpoint will result in an
incremental update to index
- Start standardizing implementation of the `text_to_jsonl' processors
- `text_to_jsonl; scripts already had a shared structure
- This change starts to codify that implicit structure
- Benefits
- Ease adding more `text_to_jsonl; processors
- Allow merging shared functionality
- Help with type hinting
- Drawbacks
- Lower agility to change. But this was already an implicit issue as
the text_to_jsonl processors got more deeply wired into the app
- Pillow already supports reading XMP metadata from Images
- Removes need to maintain my fork of unmaintained PyExiftool
- This also removes dependency on system Exiftool package for
XMP metadata extraction
- Add test to verify XMP metadata extracted from test images
- Remove references to Exiftool from Documentation