- Use pre-built wheels for torch and llama-cpp-python
- Install and link musl as it's used by llama-cpp-python pre-built
wheel instead of glibc
- Join Install git and Install Dependencies steps in pytest workflow
To remove unnecessary steps
- RapidOCR for indexing image PDFs doesn't currently support python 3.12.
It's an optional dependency anyway, so only install it if python < 3.12
- Run unit tests with python version 3.12 as well
Resolves#522
- Partition configuration for indexing local data based on user accounts
- Store indexed data in an underlying postgres db using the `pgvector` extension
- Add migrations for all relevant user data and embeddings generation. Very little performance optimization has been done for the lookup time
- Apply filters using SQL queries
- Start removing many server-level configuration settings
- Configure GitHub test actions to run during any PR. Update the test action to run in a containerized environment with a DB.
- Update the Docker image and docker-compose.yml to work with the new application design
The test workflow fails regularly with an OperationCancelled error.
This is an intermittent failure that gets resolved on running the
failed workflows a few times.
* Add support for gpt4all's falcon model as an additional conversation processor
- Update the UI pages to allow the user to point to the new endpoints for GPT
- Update the internal schemas to support both GPT4 models and OpenAI
- Add unit tests benchmarking some of the Falcon performance
* Add exc_info to include stack trace in error logs for text processors
* Pull shared functions into utils.py to be used across gpt4 and gpt
* Add migration for new processor conversation schema
* Skip GPT4All actor tests due to typing issues
* Fix Obsidian processor configuration in auto-configure flow
* Rename enable_local_llm to enable_offline_chat
- Previously Khoj could only support Python upto 3.10 due to pytorch.
But lots of folks had python 3.11 installed by default on their machines.
This required installing python 3.10 and dealing with virtual envs.
With Torch >= 2.0.1 now able to support python 3.11, at least one
class of installation troubles for Khoj should drop. See
https://github.com/pytorch/pytorch/issues/86566 for reference
- Preliminary testing indicates using the new torch 2.x may reduce
search time by 25% (from 80ms to 60ms on Mac M1)
- Update Docs to not require mentioning python <=3.10 required
- Update Github test workflow to run khoj tests with python 3.11 too
- Run mypy on git push (not every commit) but for all files
- Running it on pre-commit, doesn't make sense as mypy wants to look
at all files, not just diff files
- But this is too time consuming to run every commit, so run on push
- Update development section documentation on installing, manually
running pre-commit for validation that includes running mypy checks
- Why
The khoj pypi packages should be installed in `khoj' directory.
Previously it was being installed into `src' directory, which is a
generic top level directory name that is discouraged from being used
- Changes
- move src/* to src/khoj/*
- update `setup.py' to `find_packages' in `src' instead of project root
- rename imports to form `from khoj.*' in complete project
- update `constants.web_directory' path to use `khoj' directory
- rename root logger to `khoj' in `main.py'
- fix image_search tests to use the newly rename `khoj' logger
- update config, docs, workflows to reference new path `src/khoj'