* Initial pass at backend changes to support agents
- Add a db model for Agents, attaching them to conversations
- When an agent is added to a conversation, override the system prompt to tweak the instructions
- Agents can be configured with prompt modification, model specification, a profile picture, and other things
- Admin-configured models will not be editable by individual users
- Add unit tests to verify agent behavior. Unit tests demonstrate imperfect adherence to prompt specifications
* Customize default behaviors for conversations without agents or with default agents
* Use agent_id for getting correct agent
* Merge migrations
* Simplify some variable definitions, add additional security checks for agents
* Rename agent.tuning -> agent.personality
- Remove stale tests
- Improve tests to pass across gpt-3.5 and gpt-4-turbo
- The haiku creation director was failing because of duplicate query in
instantiated prompt
* Make major improvements to the image generation flow
- Include user context from online references and personal notes for generating images
- Dynamically select the modality that the LLM should respond with
- Retun the inferred context in the query response for the dekstop, web chat views to read
* Add unit tests for retrieving response modes via LLM
* Move output mode unit tests to the actor suite, rather than director
* Only show the references button if there is at least one available
* Rename aget_relevant_modes to aget_relevant_output_modes
* Use a shared method for generating reference sections, simplify some of the prompting logic
* Make out of space errors in the desktop client more obvious
* Display given_name field only if it is not None
* Add default slugs in the migration script
* Ensure that updated_at is saved appropriately, make sure most recent chat is returned for default history
* Remove the bin button from the chat interface, given deletion is handled in the drop-down menus
* Refresh the side panel when a new chat is created
* Improveme tool retrieval prompt, don't let /online fail, and improve parsing of extract questions
* Fix ending chat response by offline chat on hitting a stop phrase
Previously the whole phrase wouldn't be in the same response chunk, so
chat response wouldn't stop on hitting a stop phrase
Now use a queue to keep track of last 3 chunks, and to stop responding
when hit a stop phrase
* Make chat on Obsidian backward compatible post chat session API updates
- Make chat on Obsidian get chat history from
`responseJson.response.chat' when available (i.e when using new api)
- Else fallback to loading chat history from
responseJson.response (i.e when using old api)
* Fix detecting success of indexing update in khoj.el
When khoj.el attempts to index on a Khoj server served behind an https
endpoint, the success reponse status contains plist with certs. This
doesn't mean the update failed.
Look for :errors key in status instead to determine if indexing API
call failed. This fixes detecting indexing API call success on the
Khoj Emacs client, even for Khoj servers running behind SSL/HTTPS
* Fix the mechanism for populating notes references in the conversation primer for both offline and online chat
* Return conversation.default when empty list for dynamic prompt selection, send all cmds in telemetry
* Fix making chat on Obsidian backward compatible post chat session API updates
New API always has conversation_id set, not `chat' which can be unset
when chat session is empty.
So use conversation_id to decide whether to get chat logs from
`responseJson.response.chat' or `responseJson.response' instead
---------
Co-authored-by: Debanjum Singh Solanky <debanjum@gmail.com>
* Have Khoj dynamically select which conversation command(s) are to be used in the chat flow
- Intercept the commands if in default mode, and have Khoj dynamically guess which tools would be the most relevant for answering the user's query
* Remove conditional for default to enter online search mode
* Add multiple-tool examples in the prompt, make prompt for tools more specific to info collection
* Initailize changes to incporate web scraping logic after getting SERP results
- Do some minor refactors to pass a symptom prompt to the openai model when making a query
- integrate Olostep in order to perform the webscraping
* Fix truncation error with new line, fix typing in olostep code
* Use the authorization header for the token
* Add a small hint/indicator for how to use Khojs other modalities in the welcome prompt
* Add more detailed error message if Olostep query fails
* Add unit tests which invoke Olostep in chat director
* Add test for olostep tool
- Our pypi package currently does not work because the django app and associated database is not included. To remedy this issue, move the app into the src/khoj folder. This has the added benefit of improved organization of the codebase, as all server related code is now in a single folder
- Update associated file paths and system references
- Upgrade FastAPI to >= latest version. Required upgrade of FastAPI.
Earlier version didn't support wrapping common query params in class
- Use per fixture app instead of a global FastAPI app in conftest
- Upgrade minimum required Django version
- Fix no notes chat director test with updated no notes message
No notes message was updated in commit 118f1143
- Notes prompt doesn't need to be so tuned to question answering. User
could just want to talk about life. The notes need to be used to
response to those, not necessarily only retrieve answers from notes
- System and notes prompts were forcing asking follow-up questions a
little too much. Reduce strength of follow-up question asking
- Add a data model which allows us to store Conversations with users. This does a minimal lift over the current setup, where the underlying data is stored in a JSON file. This maintains parity with that configuration.
- There does _seem_ to be some regression in chat quality, which is most likely attributable to search results.
This will help us with #275. It should become much easier to maintain multiple Conversations in a given table in the backend now. We will have to do some thinking on the UI.
* Store conversation command options in an Enum
* Move to slash commands instead of using @ to specify general commands
* Calculate conversation command once & pass it as arg to child funcs
* Add /notes command to respond using only knowledge base as context
This prevents the chat model to try respond using it's general world
knowledge only without any references pulled from the indexed
knowledge base
* Test general and notes slash commands in openai chat director tests
* Update gpt4all tests to use md configuration
* Add a /help tooltip
* Add dynamic support for describing slash commands. Remove default and treat notes as the default type
---------
Co-authored-by: sabaimran <narmiabas@gmail.com>
* Add support for gpt4all's falcon model as an additional conversation processor
- Update the UI pages to allow the user to point to the new endpoints for GPT
- Update the internal schemas to support both GPT4 models and OpenAI
- Add unit tests benchmarking some of the Falcon performance
* Add exc_info to include stack trace in error logs for text processors
* Pull shared functions into utils.py to be used across gpt4 and gpt
* Add migration for new processor conversation schema
* Skip GPT4All actor tests due to typing issues
* Fix Obsidian processor configuration in auto-configure flow
* Rename enable_local_llm to enable_offline_chat
2023-07-26 16:27:08 -07:00
Renamed from tests/test_chat_director.py (Browse further)