Sleep until rate limit passed is too expensive, as it keeps a
app worker occupied.
Ideally we should schedule job to contine after rate limit wait time
has passed. But this can only be added once we support jobs scheduling.
Normal indexing quickly Github hits rate limits. Purpose of exposing
Github indexer is for indexing content like notes, code and other
knowledge base in a repo.
The current indexer doesn't scale to index metadata given Github's
rate limits, so remove it instead of giving a degraded experience of
partially indexed repos
- Allow syncing more file types from desktop app to index on server
- Use `file-type' package to identify valid text file types on Desktop app
- Split plaintext entries into smaller logical units than a whole file
Since the text splitting upgrades in #645, compiled chunks have more
logical splits like paragraph, sentence.
Show those (potentially) smaller snippets to the user as references
- Tangential Fix:
Initialize unbound currentTime variable for error log timestamp
- Use Magika's AI for a tiny, portable and better file type
identification system
- Existing file type identification tools like `file' and `magic'
require system level packages, that may not be installed by default
on all operating systems (e.g `file' command on Windows)
## Major
- Parse markdown, org parent entries as single entry if fit within max tokens
- Parse a file as single entry if it fits with max token limits
- Add parent heading ancestry to extracted markdown entries for context
- Chunk text in preference order of para, sentence, word, character
## Minor
- Create wrapper function to get entries from org, md, pdf & text files
- Remove unused Entry to Jsonl converter from text to entry class, tests
- Dedupe code by using single func to process an org file into entries
Resolves#620
### Why
- Python 3.12 is the default Python on Ubuntu 24.04 LTS, Windows and Mac via Homebrew
- Python 3.12 has a bunch of improvements that can be explored with Khoj (e.g per core GIL for performance)
## Changes
- The latest PyTorch now supports Python 3.12
- RapidOCR for indexing image PDFs doesn't currently support python 3.12.
But it's an optional dependency, so only install it if python < 3.12
### Testing
- Verified Khoj installs fine on Windows and Mac with Python 3.12
- Verified Khoj chat works fine on Mac, Windows with Python 3.12
Resolves#522
- RapidOCR for indexing image PDFs doesn't currently support python 3.12.
It's an optional dependency anyway, so only install it if python < 3.12
- Run unit tests with python version 3.12 as well
Resolves#522
* Add support for using OAuth2.0 in the Notion integration
* Add notion to the admin page
* Remove unnecessary content_index and image search/setup references
* Trigger background job to start indexing Notion after user configures it
* Add a log line when a new Notion integration is setup
* Fix references to the configure_content methods
`re.MULTILINE' should be passed to the `flags' argument, not the
`max_splits' argument of the `re.split' func
This was messing up the indexing by only allowing a maximum of
re.MULTILINE splits. Fixing this improves the search quality to
previous state
More content indexed per entry would result in an overall scores
lowering effect. Increase default search distance threshold to counter that
- Details
- Fix expected results post indexing updates
- Fix search with max distance post indexing updates
- Minor
- Remove openai chat actor test for after: operator as it's not expected anymore
- Major
- Do not split org file, entry if it fits within the max token limits
- Recurse down org file entries, one heading level at a time until
reach leaf node or the current parent tree fits context window
- Update `process_single_org_file' func logic to do this recursion
- Convert extracted org nodes with children into entries
- Previously org node to entry code just had to handle leaf entries
- Now it recieve list of org node trees
- Only add ancestor path to root org-node of each tree
- Indent each entry trees headings by +1 level from base level (=2)
- Minor
- Stop timing org-node parsing vs org-node to entry conversion
Just time the wrapping function for org-mode entry extraction
This standardizes what is being timed across at md, org etc.
- Move try/catch to `extract_org_nodes' from `parse_single_org_file'
func to standardize this also across md, org
These changes improve context available to the search model.
Specifically this should improve entry context from short knowledge trees,
that is knowledge bases with sparse, short heading/entry trees
Previously we'd always split markdown files by headings, even if a
parent entry was small enough to fit entirely within the max token
limits of the search model. This used to reduce the context available
to the search model to select appropriate entries for a query,
especially from short entry trees
Revert back to using regex to parse through markdown file instead of
using MarkdownHeaderTextSplitter. It was easier to implement the
logical split using regexes rather than bend MarkdowHeaderTextSplitter
to implement it.
- DFS traverse the markdown knowledge tree, prefix ancestry to each entry
These changes improve entry context available to the search model
Specifically this should improve entry context from short knowledge trees,
that is knowledge bases with small files
Previously we split all markdown files by their headings,
even if the file was small enough to fit entirely within the max token
limits of the search model. This used to reduce the context available
to select the appropriate entries for a given query for the search model,
especially from short knowledge trees