Previously we were skipping the extract questions step for offline
chat as default offline chat model wasn't good enough to output proper
json given the time it took to extract questions.
The new default offline chat models gives json much more regularly and
with date filters, so the extract questions step becomes useful given
the impact on latency
- How to pip install khoj to run offline chat on GPU
After migration to llama-cpp-python more GPU types are supported but
require build step so mention how
- New default offline chat model
- Where to get supported chat models from on HuggingFace
- Benefits of moving to llama-cpp-python from gpt4all:
- Support for all GGUF format chat models
- Support for AMD, Nvidia, Mac, Vulcan GPU machines (instead of just Vulcan, Mac)
- Supports models with more capabilities like tools, schema
enforcement, speculative ddecoding, image gen etc.
- Upgrade default chat model, prompt size, tokenizer for new supported
chat models
- Load offline chat model when present on disk without requiring internet
- Load model onto GPU if not disabled and device has GPU
- Load model onto CPU if loading model onto GPU fails
- Create helper function to check and load model from disk, when model
glob is present on disk.
`Llama.from_pretrained' needs internet to get repo info from
HuggingFace. This isn't required, if the model is already downloaded
Didn't find any existing HF or llama.cpp method that looked for model
glob on disk without internet
* Initial pass at backend changes to support agents
- Add a db model for Agents, attaching them to conversations
- When an agent is added to a conversation, override the system prompt to tweak the instructions
- Agents can be configured with prompt modification, model specification, a profile picture, and other things
- Admin-configured models will not be editable by individual users
- Add unit tests to verify agent behavior. Unit tests demonstrate imperfect adherence to prompt specifications
* Customize default behaviors for conversations without agents or with default agents
* Add a new web client route for viewing all agents
* Use agent_id for getting correct agent
* Add web UI views for agents
- Add a page to view all agents
- Add slugs to manage agents
- Add a view to view single agent
- Display active agent when in chat window
- Fix post-login redirect issue
* Fix agent view
* Spruce up the 404 page and improve the overall layout for agents pages
* Create chat actor for directly reading webpages based on user message
- Add prompt for the read webpages chat actor to extract, infer
webpage links
- Make chat actor infer or extract webpage to read directly from user
message
- Rename previous read_webpage function to more narrow
read_webpage_at_url function
* Rename agents_page -> agent_page
* Fix unit test for adding the filename to the compiled markdown entry
* Fix layout of agent, agents pages
* Merge migrations
* Let the name, slug of the default agent be Khoj, khoj
* Fix chat-related unit tests
* Add webpage chat command for read web pages requested by user
Update auto chat command inference prompt to show example of when to
use webpage chat command (i.e when url is directly provided in link)
* Support webpage command in chat API
- Fallback to use webpage when SERPER not setup and online command was
attempted
- Do not stop responding if can't retrieve online results. Try to
respond without the online context
* Test select webpage as data source and extract web urls chat actors
* Tweak prompts to extract information from webpages, online results
- Show more of the truncated messages for debugging context
- Update Khoj personality prompt to encourage it to remember it's capabilities
* Rename extract_content online results field to webpages
* Parallelize simple webpage read and extractor
Similar to what is being done with search_online with olostep
* Pass multiple webpages with their urls in online results context
Previously even if MAX_WEBPAGES_TO_READ was > 1, only 1 extracted
content would ever be passed.
URL of the extracted webpage content wasn't passed to clients in
online results context. This limited them from being rendered
* Render webpage read in chat response references on Web, Desktop apps
* Time chat actor responses & chat api request start for perf analysis
* Increase the keep alive timeout in the main application for testing
* Do not pipe access/error logs to separate files. Flow to stdout/stderr
* [Temp] Reduce to 1 gunicorn worker
* Change prod docker image to use jammy, rather than nvidia base image
* Use Khoj icon when Khoj web is installed on iOS as a PWA
* Make slug required for agents
* Simplify calling logic and prevent agent access for unauthenticated users
* Standardize to use personality over tuning in agent nomenclature
* Make filtering logic more stringent for accessible agents and remove unused method:
* Format chat message query
---------
Co-authored-by: Debanjum Singh Solanky <debanjum@gmail.com>
### Overview
Khoj can now read website directly without needing to go through the search step first
### Details
- Parallelize simple webpage read and extractor
- Rename extract_content online results field to web pages
- Tweak prompts to extract information from webpages, online results
- Test select webpage as data source and extract web urls chat actors
- Render webpage read in chat response references on Web, Desktop apps
- Pass multiple webpages with their urls in online results context
- Support webpage command in chat API
- Add webpage chat command for read web pages requested by user
- Create chat actor for directly reading webpages based on user message
Previously even if MAX_WEBPAGES_TO_READ was > 1, only 1 extracted
content would ever be passed.
URL of the extracted webpage content wasn't passed to clients in
online results context. This limited them from being rendered
- Fallback to use webpage when SERPER not setup and online command was
attempted
- Do not stop responding if can't retrieve online results. Try to
respond without the online context
* Initial pass at backend changes to support agents
- Add a db model for Agents, attaching them to conversations
- When an agent is added to a conversation, override the system prompt to tweak the instructions
- Agents can be configured with prompt modification, model specification, a profile picture, and other things
- Admin-configured models will not be editable by individual users
- Add unit tests to verify agent behavior. Unit tests demonstrate imperfect adherence to prompt specifications
* Customize default behaviors for conversations without agents or with default agents
* Use agent_id for getting correct agent
* Merge migrations
* Simplify some variable definitions, add additional security checks for agents
* Rename agent.tuning -> agent.personality
- Use the conversation id of the retrieved conversation rather than the
potentially unset conversation id passed via API
- await creating new chat when no chat id provided and no existing
conversations exist
- Move some common methods into separate functions to make the UI components more efficient
- The normal HTTP-based chat connection will still work and serves as a fallback if the websocket is unavailable
- Convert to a model of calling the search API directly with a function call (rather than using the API method)
- Gracefully handle websocket connection disconnects
- Ensure that the rest of the response is still saved, as it is currently, if the user disconects from the client
- Setup unchangeable context at the beginning of the session when the connection is established (like location, username, etc)
The recently added after: operator to online search actor was too
restrictive, gave worse results than when just use natural language
dates in search query