- Benefits of moving to llama-cpp-python from gpt4all:
- Support for all GGUF format chat models
- Support for AMD, Nvidia, Mac, Vulcan GPU machines (instead of just Vulcan, Mac)
- Supports models with more capabilities like tools, schema
enforcement, speculative ddecoding, image gen etc.
- Upgrade default chat model, prompt size, tokenizer for new supported
chat models
- Load offline chat model when present on disk without requiring internet
- Load model onto GPU if not disabled and device has GPU
- Load model onto CPU if loading model onto GPU fails
- Create helper function to check and load model from disk, when model
glob is present on disk.
`Llama.from_pretrained' needs internet to get repo info from
HuggingFace. This isn't required, if the model is already downloaded
Didn't find any existing HF or llama.cpp method that looked for model
glob on disk without internet
* Make major improvements to the image generation flow
- Include user context from online references and personal notes for generating images
- Dynamically select the modality that the LLM should respond with
- Retun the inferred context in the query response for the dekstop, web chat views to read
* Add unit tests for retrieving response modes via LLM
* Move output mode unit tests to the actor suite, rather than director
* Only show the references button if there is at least one available
* Rename aget_relevant_modes to aget_relevant_output_modes
* Use a shared method for generating reference sections, simplify some of the prompting logic
* Make out of space errors in the desktop client more obvious
GPT4all now supports gguf llama.cpp chat models. Latest
GPT4All (+mistral) performs much at least 3x faster.
On Macbook Pro at ~10s response start time vs 30s-120s earlier.
Mistral is also a better chat model, although it hallucinates more
than llama-2
- Format extract questions prompt format with newlines and whitespaces
- Make llama v2 extract questions prompt consistent
- Remove empty questions extracted by offline extract_questions actor
- Update implicit qs extraction unit test for offline search actor
* Remove GPT4All dependency in pyproject.toml and use multiplatform builds in the dockerization setup in GH actions
* Move configure_search method into indexer
* Add conditional installation for gpt4all
* Add hint to go to localhost:42110 in the docs. Addresses #477
* Working example with LlamaV2 running locally on my machine
- Download from huggingface
- Plug in to GPT4All
- Update prompts to fit the llama format
* Add appropriate prompts for extracting questions based on a query based on llama format
* Rename Falcon to Llama and make some improvements to the extract_questions flow
* Do further tuning to extract question prompts and unit tests
* Disable extracting questions dynamically from Llama, as results are still unreliable
* Add support for gpt4all's falcon model as an additional conversation processor
- Update the UI pages to allow the user to point to the new endpoints for GPT
- Update the internal schemas to support both GPT4 models and OpenAI
- Add unit tests benchmarking some of the Falcon performance
* Add exc_info to include stack trace in error logs for text processors
* Pull shared functions into utils.py to be used across gpt4 and gpt
* Add migration for new processor conversation schema
* Skip GPT4All actor tests due to typing issues
* Fix Obsidian processor configuration in auto-configure flow
* Rename enable_local_llm to enable_offline_chat