- Benefits of moving to llama-cpp-python from gpt4all:
- Support for all GGUF format chat models
- Support for AMD, Nvidia, Mac, Vulcan GPU machines (instead of just Vulcan, Mac)
- Supports models with more capabilities like tools, schema
enforcement, speculative ddecoding, image gen etc.
- Upgrade default chat model, prompt size, tokenizer for new supported
chat models
- Load offline chat model when present on disk without requiring internet
- Load model onto GPU if not disabled and device has GPU
- Load model onto CPU if loading model onto GPU fails
- Create helper function to check and load model from disk, when model
glob is present on disk.
`Llama.from_pretrained' needs internet to get repo info from
HuggingFace. This isn't required, if the model is already downloaded
Didn't find any existing HF or llama.cpp method that looked for model
glob on disk without internet
* Display given_name field only if it is not None
* Add default slugs in the migration script
* Ensure that updated_at is saved appropriately, make sure most recent chat is returned for default history
* Remove the bin button from the chat interface, given deletion is handled in the drop-down menus
* Refresh the side panel when a new chat is created
* Improveme tool retrieval prompt, don't let /online fail, and improve parsing of extract questions
* Fix ending chat response by offline chat on hitting a stop phrase
Previously the whole phrase wouldn't be in the same response chunk, so
chat response wouldn't stop on hitting a stop phrase
Now use a queue to keep track of last 3 chunks, and to stop responding
when hit a stop phrase
* Make chat on Obsidian backward compatible post chat session API updates
- Make chat on Obsidian get chat history from
`responseJson.response.chat' when available (i.e when using new api)
- Else fallback to loading chat history from
responseJson.response (i.e when using old api)
* Fix detecting success of indexing update in khoj.el
When khoj.el attempts to index on a Khoj server served behind an https
endpoint, the success reponse status contains plist with certs. This
doesn't mean the update failed.
Look for :errors key in status instead to determine if indexing API
call failed. This fixes detecting indexing API call success on the
Khoj Emacs client, even for Khoj servers running behind SSL/HTTPS
* Fix the mechanism for populating notes references in the conversation primer for both offline and online chat
* Return conversation.default when empty list for dynamic prompt selection, send all cmds in telemetry
* Fix making chat on Obsidian backward compatible post chat session API updates
New API always has conversation_id set, not `chat' which can be unset
when chat session is empty.
So use conversation_id to decide whether to get chat logs from
`responseJson.response.chat' or `responseJson.response' instead
---------
Co-authored-by: Debanjum Singh Solanky <debanjum@gmail.com>
* Have Khoj dynamically select which conversation command(s) are to be used in the chat flow
- Intercept the commands if in default mode, and have Khoj dynamically guess which tools would be the most relevant for answering the user's query
* Remove conditional for default to enter online search mode
* Add multiple-tool examples in the prompt, make prompt for tools more specific to info collection
- Can now expect date awareness chat quality test to pass
- Prevent offline chat model from printing verbatim user Notes and
special tokens
- Make it ask follow-up questions if it needs more context
* Initailize changes to incporate web scraping logic after getting SERP results
- Do some minor refactors to pass a symptom prompt to the openai model when making a query
- integrate Olostep in order to perform the webscraping
* Fix truncation error with new line, fix typing in olostep code
* Use the authorization header for the token
* Add a small hint/indicator for how to use Khojs other modalities in the welcome prompt
* Add more detailed error message if Olostep query fails
* Add unit tests which invoke Olostep in chat director
* Add test for olostep tool
- Add a data model which allows us to store Conversations with users. This does a minimal lift over the current setup, where the underlying data is stored in a JSON file. This maintains parity with that configuration.
- There does _seem_ to be some regression in chat quality, which is most likely attributable to search results.
This will help us with #275. It should become much easier to maintain multiple Conversations in a given table in the backend now. We will have to do some thinking on the UI.
* Store conversation command options in an Enum
* Move to slash commands instead of using @ to specify general commands
* Calculate conversation command once & pass it as arg to child funcs
* Add /notes command to respond using only knowledge base as context
This prevents the chat model to try respond using it's general world
knowledge only without any references pulled from the indexed
knowledge base
* Test general and notes slash commands in openai chat director tests
* Update gpt4all tests to use md configuration
* Add a /help tooltip
* Add dynamic support for describing slash commands. Remove default and treat notes as the default type
---------
Co-authored-by: sabaimran <narmiabas@gmail.com>