- Reason
- All clients that currently consume the API are part of Khoj
- Any breaking API changes will be fixed in clients immediately
- So decoupling client from API is not required
- This removes the burden of maintaining muliple versions of the API
- Context
- The app maintains all text content in a standard, intermediate format
- The intermediate format was loaded, passed around as a dictionary
for easier, faster updates to the intermediate format schema initially
- The intermediate format is reasonably stable now, given it's usage
by all 3 text content types currently implemented
- Changes
- Concretize text entries into `Entries' class instead of using dictionaries
- Code is updated to load, pass around entries as `Entries' objects
instead of as dictionaries
- `text_search' and `text_to_jsonl' methods are annotated with
type hints for the new `Entries' type
- Code and Tests referencing entries are updated to use class style
access patterns instead of the previous dictionary access patterns
- Move `mark_entries_for_update' method into `TextToJsonl' base class
- This is a more natural location for the method as it is only
(to be) used by `text_to_jsonl' classes
- Avoid circular reference issues on importing `Entries' class
- Both Text, Image Search were already giving list of entry, score
- This change just concretizes this change and exposes this in the API
documentation (i.e OpenAPI, Swagger, Redocs)
- Split router.py into v1.0, beta and frontend (no-prefix) api modules
under new router package. Version tag in main.py via prefix
- Update frontends to use the versioned api endpoints
- Update tests to work with versioned api endpoints
- Update docs to mentioned, reference only versioned api endpoints
In my installation, it appears that `url-request-method` is sometimes set
globally to POST. Need to explicitly set it to ensure that GET is always
used as intended.
- Pass force=true to /update API to force regenerating index from
scratch
- Otherwise calls to the /update API endpoint will result in an
incremental update to index
- Start standardizing implementation of the `text_to_jsonl' processors
- `text_to_jsonl; scripts already had a shared structure
- This change starts to codify that implicit structure
- Benefits
- Ease adding more `text_to_jsonl; processors
- Allow merging shared functionality
- Help with type hinting
- Drawbacks
- Lower agility to change. But this was already an implicit issue as
the text_to_jsonl processors got more deeply wired into the app
- Pillow already supports reading XMP metadata from Images
- Removes need to maintain my fork of unmaintained PyExiftool
- This also removes dependency on system Exiftool package for
XMP metadata extraction
- Add test to verify XMP metadata extracted from test images
- Remove references to Exiftool from Documentation
- Simplify tracking khoj query history, saving/sharing links
- Do not execute search, when query only contains whitespaces
- Prevents error when try process results of empty query
- As `/reload` updates index incrementally, it's relatively quick
- This makes exposing `/reload` endpoint a better default to expose
via the web interface than `the /regenerate' endpoint
- For queries with only filters in them short-circuit and return
filtered results. No need to run semantic search, re-ranking.
- Add client test for filter only query and quote query in client tests
- Image search already uses a sorted list of images to process
- Prevents index of entries to desync when entries, embeddings
generated by a separate server/app instance
- Update existings code, tests to process input-filters as list
instead of str
- Test `text_to_jsonl' get files methods to work with combination of
`input-files' and `input-filters'
Resolves#84
- Provides more control to invalidate cache on update to entries, embeddings
- Allows logging when results are being returned from cache etc
- FastAPI, Swagger API docs look better as the `search' controller not
wrapped in generically named function when using functools LRU decorator
- Issue
- Indent regex was previously catching escape sequences like newlines
- This was resulting in entries with only escape sequences in body to
be prepended to property drawers etc during rendering
- Fix
- Update indent regex to only look for spaces in each line
- Only render body when body contains non-escape characters
- Create test to prevent this regression from silently resurfacing
- Previously heading entries were not indexed to maintain search quality
- But given that there are use-cases for indexing entries with no body
- Add a configurable `index_heading_entries' field to index heading entries
- This `TextContentConfig' field is currently only used for OrgMode content
- Let the specific text_to_jsonl method decide which of the
TextContentConfig fields it needs to convert <text> type to jsonl
- This simplifies extending TextContentConfig for a specific type without
modifying all text_to_jsonl methods
- It keeps the number of args being passed to the `text_to_jsonl'
methods in check
- It's more of a hassle to not let word filter go stale on entry
updates
- Generating index on 120K lines of notes takes 1s. Loading from file
takes 0.2s. For less content load time difference will be even smaller
- Let go of startup time improvement for simplicity for now
- Comparing compiled entries is the appropriately narrow target to
identify entries that need to encode their embedding vectors. Given we
pass the compiled form of the entry to the model for encoding
- Hashing the whole entry along with it's raw form was resulting in a
bunch of entries being marked for updated as LINE: <entry_line_no>
is a string added to each entries raw format.
- This results in an update to a single entry resulting in all entries
below it in the file being marked for update (as all their line
numbers have changed)
- Log performance metrics for steps to convert org entries to jsonl
- Having Tags as sets was returning them in a different order
everytime
- This resulted in spuriously identifying existing entries as new
because their tags ordering changed
- Converting tags to list fixes the issue and identifies updated new
entries for incremental update correctly
- What
- Hash the entries and compare to find new/updated entries
- Reuse embeddings encoded for existing entries
- Only encode embeddings for updated or new entries
- Merge the existing and new entries and embeddings to get the updated
entries, embeddings
- Why
- Given most note text entries are expected to be unchanged
across time. Reusing their earlier encoded embeddings should
significantly speed up embeddings updates
- Previously we were regenerating embeddings for all entries,
even if they had existed in previous runs
- Parsed `level` argument passed to OrgNode during init is expected to
be a string, not an integer
- This was resulting in app failure only when parsing org files with
no headings, like in issue #83, as level is set to string of `*`s
the moment a heading is found in the current file
- Previously we were failing if no valid entries while computing
embeddings. This was obscuring the actual issue of no valid entries
found in the specified content files
- Throwing an exception early with clear message when no entries found
should make clarify the issue to be fixed
- See issue #83 for details
- Default config has `input_files' set to None
- This was being passed to `FileBrowser' on Initialization
- But `FileBrowser' expects `content_files' of list type, not None
- This resulted in an unexpected NoneType failure
- The logging to file code expects the config directory to already be setup
- But parent directory of config file was being set up later in code
- This resulted in app start failing with ~/.khoj dir does not exist error
- Pass file associated with entries in markdown, beancount to json converters
- Add File, Word, Date Filters to Ledger, Markdown Types
- Word, Date Filters were accidently removed from the above types yesterday
- File Filter is the only filter that newly got added
- Filter entries, embeddings by ids satisfying all filters in query
func, after each filter has returned entry ids satisfying their
individual acceptance criteria
- Previously each filter would return a filtered list of entries.
Each filter would be applied on entries filtered by previous filters.
This made the filtering order dependent
- Benefits
- Filters can be applied independent of their order of execution
- Precomputed indexes for each filter is not in danger of running
into index out of bound errors, as filters run on original entries
instead of on entries filtered by filters that have run before it
- Extract entries satisfying filter only once instead of doing
this for each filter
- Costs
- Each filter has to process all entries even if previous filters
may have already marked them as non-satisfactory
- This will help filter query to org content type using file filter
- Do not explicitly specify items being extracted from json of each
entry in text_search as all text search content types do not have
file being set in jsonl converters
- Specify just file name to get all notes associated with file at path
- E.g `query` with `file:"file1.org"` will return `entry1`
if `entry1` is in `file1.org` at `~/notes/file.org`
- Test
- Test converting simple file name filter to regex for path match
- Test file filter with space in file name
- Code Changes
- Use list comprehension and `torch.index_select' methods
- to speed selection of entries, embedding tensors satisfying filter
- avoid deep copy of entries, embeddings
- avoid updating existing lists (of entries, embeddings)
- Use word to entry map and set operations to mark entries satisfying
inclusion, exclusion filters
- Results
- Speed up explicit filtering by two orders of magnitude
- Improve consistency of speed up across inclusion and exclusion filtering
- Only the filter knows when entries, embeddings are to be manipulated.
So move the responsibility to deep copy before manipulating entries,
embeddings to the filters
- Create deep copy in filters. Avoids creating deep copy of entries,
embeddings when filter results are being loaded from cache etc
- Do not run the more expensive explicit filter until the word to be
filtered is completed by user. This requires an end sequence marker
to identify end of explicit word filter to trigger filtering
- Space isn't a good enough delimiter as the explicit filter could be
at the end of the query in which case no space
- Stop passing verbose flag around app methods
- Minor remap of verbosity levels to match python logging framework levels
- verbose = 0 maps to logging.WARN
- verbose = 1 maps to logging.INFO
- verbose >=2 maps to logging.DEBUG
- Minor clean-up of app: unused modules, conversation file opening
- This also pushes the updated URL state to history
- Allows jumping back to the web interface after clicking on an image
and having the type set to image search
- Previously type would get reset to the default search type on
jumping back
- CLIP doesn't need full size images for generating embeddings with
decent search results. The sentence transformers docs use images
scaled to 640px width
- Benefits
- Normalize image sizes
- Increase image embeddings generation speed
- Decrease memory usage while generating embeddings from images
- 5e6625a Fix file browser to not add empty line when no file/dir selected
- 8098b8c Bring main window to Top when open from System Tray
- 1c122a8 Place window near top so buttons are not hidden by OS bottom bar
- dfe2546 Set Khoj Icon on Main Desktop Window
- 1b1f8f9 Move Splash screen text below icon. Set the text color to black
- 450f644 Fix path to remove shared libraries when packaging the Windows app
- When no file selected in file browser an empty line/entry gets added
to input entries list
- Bug got introduced due to insufficient update on change to add
instead of insert
- Update is_none_or_empty helper method to also check for empty string
- It is a non-user configurable, app state that is set on app start
- Reduce passing unneeded arguments around. Just set device where
required by looking for ML compute device in global state
- Note: Support for MPS in Pytorch is currently in v1.13.0 nightly builds
- Users will have to wait for PyTorch MPS support to land in stable builds
- Until then the code can be tweaked and tested to make use of the GPU
acceleration on newer Macs
- Pass device to load models onto from app state.
- SentenceTransformer models accept device to load models onto during initialization
- Pass device to load corpus embeddings onto from app state
- CLIP Image score and XMP metadata score are not combining well.
When combined they give non sensical results. Enable only once
figure how best to combine the two.
- Show scores with higher precision for image search
- Image search scores seem to be mostly be between 0.2 - 0.3 for some reason
- Higher precision scores make it easier to understand the quality
of returned results perceived by the model itself