- That is, sample_config.yml is renamed to khoj_sample.yml
- This makes the application config filename less generic,
more easily identifiable with the application
- Update docs, app accordingly
- The all-MiniLM-L6-v2 is more accurate
- The exact previous model isn't benchmarked but based on the
performance of the closest model to it. Seems like the new model
maybe similar in speed and size
- On very preliminary evaluation of the model, the new model seems
faster, with pretty decent results
- The multi-qa-MiniLM-L6-cos-v1 is more extensively benchmarked[1]
- It has the right mix of model query speed, size and performance on benchmarks
- On hugging face it has way more downloads and likes than the msmarco model[2]
- On very preliminary evaluation of the model
- It doubles the encoding speed of all entries (down from ~8min to 4mins)
- It gave more entries that stay relevant to the query (3/5 vs 1/5 earlier)
[1]: https://www.sbert.net/docs/pretrained_models.html
[2]: https://huggingface.co/sentence-transformers
Conda doesn't support using the same environment across platforms
We were able to get away with this till now because of manually
setting up the conda environment.yml
But it's more robust to just add conda environment YAML files for each
platform as necessary
- Keeps directory paths consistent between host and container volumes
- Consistency simplifies documentation and updates required to setup
sample_config.yml for local installation