* Initial pass at backend changes to support agents
- Add a db model for Agents, attaching them to conversations
- When an agent is added to a conversation, override the system prompt to tweak the instructions
- Agents can be configured with prompt modification, model specification, a profile picture, and other things
- Admin-configured models will not be editable by individual users
- Add unit tests to verify agent behavior. Unit tests demonstrate imperfect adherence to prompt specifications
* Customize default behaviors for conversations without agents or with default agents
* Add a new web client route for viewing all agents
* Use agent_id for getting correct agent
* Add web UI views for agents
- Add a page to view all agents
- Add slugs to manage agents
- Add a view to view single agent
- Display active agent when in chat window
- Fix post-login redirect issue
* Fix agent view
* Spruce up the 404 page and improve the overall layout for agents pages
* Create chat actor for directly reading webpages based on user message
- Add prompt for the read webpages chat actor to extract, infer
webpage links
- Make chat actor infer or extract webpage to read directly from user
message
- Rename previous read_webpage function to more narrow
read_webpage_at_url function
* Rename agents_page -> agent_page
* Fix unit test for adding the filename to the compiled markdown entry
* Fix layout of agent, agents pages
* Merge migrations
* Let the name, slug of the default agent be Khoj, khoj
* Fix chat-related unit tests
* Add webpage chat command for read web pages requested by user
Update auto chat command inference prompt to show example of when to
use webpage chat command (i.e when url is directly provided in link)
* Support webpage command in chat API
- Fallback to use webpage when SERPER not setup and online command was
attempted
- Do not stop responding if can't retrieve online results. Try to
respond without the online context
* Test select webpage as data source and extract web urls chat actors
* Tweak prompts to extract information from webpages, online results
- Show more of the truncated messages for debugging context
- Update Khoj personality prompt to encourage it to remember it's capabilities
* Rename extract_content online results field to webpages
* Parallelize simple webpage read and extractor
Similar to what is being done with search_online with olostep
* Pass multiple webpages with their urls in online results context
Previously even if MAX_WEBPAGES_TO_READ was > 1, only 1 extracted
content would ever be passed.
URL of the extracted webpage content wasn't passed to clients in
online results context. This limited them from being rendered
* Render webpage read in chat response references on Web, Desktop apps
* Time chat actor responses & chat api request start for perf analysis
* Increase the keep alive timeout in the main application for testing
* Do not pipe access/error logs to separate files. Flow to stdout/stderr
* [Temp] Reduce to 1 gunicorn worker
* Change prod docker image to use jammy, rather than nvidia base image
* Use Khoj icon when Khoj web is installed on iOS as a PWA
* Make slug required for agents
* Simplify calling logic and prevent agent access for unauthenticated users
* Standardize to use personality over tuning in agent nomenclature
* Make filtering logic more stringent for accessible agents and remove unused method:
* Format chat message query
---------
Co-authored-by: Debanjum Singh Solanky <debanjum@gmail.com>
This will reduce khoj dependencies to install for self-hosting users
- Move auth production dependencies to prod python packages group
- Only enable authentication API router if not in anonymous mode
- Improve error with requirements to enable authentication when not in
anonymous mode
This will allow troubleshooting by getting the actual khoj version
being used. Previously it was always set to a static 0.0.0 version
Command to build Khoj docker image with dynamically set current app version:
`docker-compose build server --build-arg VERSION=$(pipx run hatch version)'
- Our pypi package currently does not work because the django app and associated database is not included. To remedy this issue, move the app into the src/khoj folder. This has the added benefit of improved organization of the codebase, as all server related code is now in a single folder
- Update associated file paths and system references
- Add a productionized setup for the Khoj server using `gunicorn` with multiple workers for handling requests
- Add a new Dockerfile meant for production config at `ghcr.io/khoj-ai/khoj:prod`; the existing Docker config should remain the same