import os from pathlib import Path import pytest from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from fastapi.testclient import TestClient from khoj.configure import ( configure_middleware, configure_routes, configure_search_types, ) from khoj.database.models import ( Agent, ChatModelOptions, GithubConfig, GithubRepoConfig, KhojApiUser, KhojUser, LocalMarkdownConfig, LocalOrgConfig, LocalPdfConfig, LocalPlaintextConfig, ) from khoj.processor.content.org_mode.org_to_entries import OrgToEntries from khoj.processor.content.plaintext.plaintext_to_entries import PlaintextToEntries from khoj.processor.embeddings import CrossEncoderModel, EmbeddingsModel from khoj.routers.api_content import configure_content from khoj.search_type import text_search from khoj.utils import fs_syncer, state from khoj.utils.config import SearchModels from khoj.utils.constants import web_directory from khoj.utils.helpers import resolve_absolute_path from khoj.utils.rawconfig import ContentConfig, ImageSearchConfig, SearchConfig from tests.helpers import ( ChatModelOptionsFactory, OpenAIProcessorConversationConfigFactory, ProcessLockFactory, SubscriptionFactory, UserConversationProcessorConfigFactory, UserFactory, get_chat_api_key, get_chat_provider, ) @pytest.fixture(autouse=True) def enable_db_access_for_all_tests(db): pass @pytest.fixture(scope="session") def search_config() -> SearchConfig: state.embeddings_model = dict() state.embeddings_model["default"] = EmbeddingsModel() state.cross_encoder_model = dict() state.cross_encoder_model["default"] = CrossEncoderModel() model_dir = resolve_absolute_path("~/.khoj/search") model_dir.mkdir(parents=True, exist_ok=True) search_config = SearchConfig() search_config.image = ImageSearchConfig( encoder="sentence-transformers/clip-ViT-B-32", model_directory=model_dir / "image/", encoder_type=None, ) return search_config @pytest.mark.django_db @pytest.fixture def default_user(): user = UserFactory() SubscriptionFactory(user=user) return user @pytest.mark.django_db @pytest.fixture def default_user2(): if KhojUser.objects.filter(username="default").exists(): return KhojUser.objects.get(username="default") user = KhojUser.objects.create( username="default", email="default@example.com", password="default", ) SubscriptionFactory(user=user) return user @pytest.mark.django_db @pytest.fixture def default_user3(): """ This user should not have any data associated with it """ if KhojUser.objects.filter(username="default3").exists(): return KhojUser.objects.get(username="default3") user = KhojUser.objects.create( username="default3", email="default3@example.com", password="default3", ) SubscriptionFactory(user=user) return user @pytest.mark.django_db @pytest.fixture def default_user4(): """ This user should not have a valid subscription """ if KhojUser.objects.filter(username="default4").exists(): return KhojUser.objects.get(username="default4") user = KhojUser.objects.create( username="default4", email="default4@example.com", password="default4", ) SubscriptionFactory(user=user, renewal_date=None) return user @pytest.mark.django_db @pytest.fixture def api_user(default_user): if KhojApiUser.objects.filter(user=default_user).exists(): return KhojApiUser.objects.get(user=default_user) return KhojApiUser.objects.create( user=default_user, name="api-key", token="kk-secret", ) @pytest.mark.django_db @pytest.fixture def api_user2(default_user2): if KhojApiUser.objects.filter(user=default_user2).exists(): return KhojApiUser.objects.get(user=default_user2) return KhojApiUser.objects.create( user=default_user2, name="api-key", token="kk-diff-secret", ) @pytest.mark.django_db @pytest.fixture def api_user3(default_user3): if KhojApiUser.objects.filter(user=default_user3).exists(): return KhojApiUser.objects.get(user=default_user3) return KhojApiUser.objects.create( user=default_user3, name="api-key", token="kk-diff-secret-3", ) @pytest.mark.django_db @pytest.fixture def api_user4(default_user4): if KhojApiUser.objects.filter(user=default_user4).exists(): return KhojApiUser.objects.get(user=default_user4) return KhojApiUser.objects.create( user=default_user4, name="api-key", token="kk-diff-secret-4", ) @pytest.mark.django_db @pytest.fixture def default_openai_chat_model_option(): chat_model = ChatModelOptionsFactory(chat_model="gpt-4o-mini", model_type="openai") return chat_model @pytest.mark.django_db @pytest.fixture def offline_agent(): chat_model = ChatModelOptionsFactory() return Agent.objects.create( name="Accountant", chat_model=chat_model, personality="You are a certified CPA. You are able to tell me how much I've spent based on my notes. Regardless of what I ask, you should always respond with the total amount I've spent. ALWAYS RESPOND WITH A SUMMARY TOTAL OF HOW MUCH MONEY I HAVE SPENT.", ) @pytest.mark.django_db @pytest.fixture def openai_agent(): chat_model = ChatModelOptionsFactory(chat_model="gpt-4o-mini", model_type="openai") return Agent.objects.create( name="Accountant", chat_model=chat_model, personality="You are a certified CPA. You are able to tell me how much I've spent based on my notes. Regardless of what I ask, you should always respond with the total amount I've spent. ALWAYS RESPOND WITH A SUMMARY TOTAL OF HOW MUCH MONEY I HAVE SPENT.", ) @pytest.fixture(scope="session") def search_models(search_config: SearchConfig): search_models = SearchModels() return search_models @pytest.mark.django_db @pytest.fixture def default_process_lock(): return ProcessLockFactory() @pytest.fixture def anyio_backend(): return "asyncio" @pytest.mark.django_db @pytest.fixture(scope="function") def content_config(tmp_path_factory, search_models: SearchModels, default_user: KhojUser): content_dir = tmp_path_factory.mktemp("content") # Generate Image Embeddings from Test Images content_config = ContentConfig() LocalOrgConfig.objects.create( input_files=None, input_filter=["tests/data/org/*.org"], index_heading_entries=False, user=default_user, ) text_search.setup(OrgToEntries, get_sample_data("org"), regenerate=False, user=default_user) if os.getenv("GITHUB_PAT_TOKEN"): GithubConfig.objects.create( pat_token=os.getenv("GITHUB_PAT_TOKEN"), user=default_user, ) GithubRepoConfig.objects.create( owner="khoj-ai", name="lantern", branch="master", github_config=GithubConfig.objects.get(user=default_user), ) LocalPlaintextConfig.objects.create( input_files=None, input_filter=["tests/data/plaintext/*.txt", "tests/data/plaintext/*.md", "tests/data/plaintext/*.html"], user=default_user, ) return content_config @pytest.fixture(scope="session") def md_content_config(): markdown_config = LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], ) return markdown_config @pytest.fixture(scope="function") def chat_client(search_config: SearchConfig, default_user2: KhojUser): return chat_client_builder(search_config, default_user2, require_auth=False) @pytest.fixture(scope="function") def chat_client_with_auth(search_config: SearchConfig, default_user2: KhojUser): return chat_client_builder(search_config, default_user2, require_auth=True) @pytest.fixture(scope="function") def chat_client_no_background(search_config: SearchConfig, default_user2: KhojUser): return chat_client_builder(search_config, default_user2, index_content=False, require_auth=False) @pytest.mark.django_db def chat_client_builder(search_config, user, index_content=True, require_auth=False): # Initialize app state state.config.search_type = search_config state.SearchType = configure_search_types() if index_content: LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], user=user, ) # Index Markdown Content for Search all_files = fs_syncer.collect_files(user=user) configure_content(user, all_files) # Initialize Processor from Config chat_provider = get_chat_provider() online_chat_model: ChatModelOptionsFactory = None if chat_provider == ChatModelOptions.ModelType.OPENAI: online_chat_model = ChatModelOptionsFactory(chat_model="gpt-4o-mini", model_type="openai") elif chat_provider == ChatModelOptions.ModelType.GOOGLE: online_chat_model = ChatModelOptionsFactory(chat_model="gemini-1.5-flash", model_type="google") elif chat_provider == ChatModelOptions.ModelType.ANTHROPIC: online_chat_model = ChatModelOptionsFactory(chat_model="claude-3-5-haiku-20241022", model_type="anthropic") if online_chat_model: online_chat_model.openai_config = OpenAIProcessorConversationConfigFactory( api_key=get_chat_api_key(chat_provider) ) UserConversationProcessorConfigFactory(user=user, setting=online_chat_model) state.anonymous_mode = not require_auth app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def fastapi_app(): app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return app @pytest.fixture(scope="function") def client( content_config: ContentConfig, search_config: SearchConfig, api_user: KhojApiUser, ): state.config.content_type = content_config state.config.search_type = search_config state.SearchType = configure_search_types() state.embeddings_model = dict() state.embeddings_model["default"] = EmbeddingsModel() state.cross_encoder_model = dict() state.cross_encoder_model["default"] = CrossEncoderModel() # These lines help us Mock the Search models for these search types text_search.setup( OrgToEntries, get_sample_data("org"), regenerate=False, user=api_user.user, ) text_search.setup( PlaintextToEntries, get_sample_data("plaintext"), regenerate=False, user=api_user.user, ) state.anonymous_mode = False app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def client_offline_chat(search_config: SearchConfig, default_user2: KhojUser): # Initialize app state state.config.search_type = search_config state.SearchType = configure_search_types() LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], user=default_user2, ) all_files = fs_syncer.collect_files(user=default_user2) configure_content(default_user2, all_files) # Initialize Processor from Config ChatModelOptionsFactory( chat_model="bartowski/Meta-Llama-3.1-3B-Instruct-GGUF", tokenizer=None, max_prompt_size=None, model_type="offline", ) UserConversationProcessorConfigFactory(user=default_user2) state.anonymous_mode = True app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def new_org_file(default_user: KhojUser, content_config: ContentConfig): # Setup org_config = LocalOrgConfig.objects.filter(user=default_user).first() input_filters = org_config.input_filter new_org_file = Path(input_filters[0]).parent / "new_file.org" new_org_file.touch() yield new_org_file # Cleanup if new_org_file.exists(): new_org_file.unlink() @pytest.fixture(scope="function") def org_config_with_only_new_file(new_org_file: Path, default_user: KhojUser): LocalOrgConfig.objects.update(input_files=[str(new_org_file)], input_filter=None) return LocalOrgConfig.objects.filter(user=default_user).first() @pytest.fixture(scope="function") def pdf_configured_user1(default_user: KhojUser): LocalPdfConfig.objects.create( input_files=None, input_filter=["tests/data/pdf/singlepage.pdf"], user=default_user, ) # Index Markdown Content for Search all_files = fs_syncer.collect_files(user=default_user) configure_content(default_user, all_files) @pytest.fixture(scope="function") def sample_org_data(): return get_sample_data("org") def get_sample_data(type): sample_data = { "org": { "elisp.org": """ * Emacs Khoj /An Emacs interface for [[https://github.com/khoj-ai/khoj][khoj]]/ ** Requirements - Install and Run [[https://github.com/khoj-ai/khoj][khoj]] ** Installation *** Direct - Put ~khoj.el~ in your Emacs load path. For e.g. ~/.emacs.d/lisp - Load via ~use-package~ in your ~/.emacs.d/init.el or .emacs file by adding below snippet #+begin_src elisp ;; Khoj Package (use-package khoj :load-path "~/.emacs.d/lisp/khoj.el" :bind ("C-c s" . 'khoj)) #+end_src *** Using [[https://github.com/quelpa/quelpa#installation][Quelpa]] - Ensure [[https://github.com/quelpa/quelpa#installation][Quelpa]], [[https://github.com/quelpa/quelpa-use-package#installation][quelpa-use-package]] are installed - Add below snippet to your ~/.emacs.d/init.el or .emacs config file and execute it. #+begin_src elisp ;; Khoj Package (use-package khoj :quelpa (khoj :fetcher url :url "https://raw.githubusercontent.com/khoj-ai/khoj/master/interface/emacs/khoj.el") :bind ("C-c s" . 'khoj)) #+end_src ** Usage 1. Call ~khoj~ using keybinding ~C-c s~ or ~M-x khoj~ 2. Enter Query in Natural Language e.g. "What is the meaning of life?" "What are my life goals?" 3. Wait for results *Note: It takes about 15s on a Mac M1 and a ~100K lines corpus of org-mode files* 4. (Optional) Narrow down results further Include/Exclude specific words from results by adding to query e.g. "What is the meaning of life? -god +none" """, "readme.org": """ * Khoj /Allow natural language search on user content like notes, images using transformer based models/ All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline ** Dependencies - Python3 - [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]] ** Install #+begin_src shell git clone https://github.com/khoj-ai/khoj && cd khoj conda env create -f environment.yml conda activate khoj #+end_src""", }, "markdown": { "readme.markdown": """ # Khoj Allow natural language search on user content like notes, images using transformer based models All data is processed locally. User can interface with khoj app via [Emacs](./interface/emacs/khoj.el), API or Commandline ## Dependencies - Python3 - [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links) ## Install ```shell git clone conda env create -f environment.yml conda activate khoj ``` """ }, "plaintext": { "readme.txt": """ Khoj Allow natural language search on user content like notes, images using transformer based models All data is processed locally. User can interface with khoj app via Emacs, API or Commandline Dependencies - Python3 - Miniconda Install git clone conda env create -f environment.yml conda activate khoj """ }, } return sample_data[type]