import tiktoken from langchain.schema import ChatMessage from khoj.processor.conversation import utils class TestTruncateMessage: max_prompt_size = 10 model_name = "gpt-4o-mini" encoder = tiktoken.encoding_for_model(model_name) def test_truncate_message_all_small(self): # Arrange chat_history = generate_chat_history(50) # Act truncated_chat_history = utils.truncate_messages(chat_history, self.max_prompt_size, self.model_name) tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history]) # Assert # The original object has been modified. Verify certain properties assert len(chat_history) < 50 assert len(chat_history) > 1 assert tokens <= self.max_prompt_size def test_truncate_message_first_large(self): # Arrange chat_history = generate_chat_history(5) big_chat_message = ChatMessage(role="user", content=f"{generate_content(6)}\nQuestion?") copy_big_chat_message = big_chat_message.copy() chat_history.insert(0, big_chat_message) tokens = sum([len(self.encoder.encode(message.content)) for message in chat_history]) # Act truncated_chat_history = utils.truncate_messages(chat_history, self.max_prompt_size, self.model_name) tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history]) # Assert # The original object has been modified. Verify certain properties assert len(chat_history) == 1 assert truncated_chat_history[0] != copy_big_chat_message assert tokens <= self.max_prompt_size def test_truncate_message_last_large(self): # Arrange chat_history = generate_chat_history(5) chat_history[0].role = "system" # Mark the first message as system message big_chat_message = ChatMessage(role="user", content=f"{generate_content(11)}\nQuestion?") copy_big_chat_message = big_chat_message.copy() chat_history.insert(0, big_chat_message) initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_history]) # Act truncated_chat_history = utils.truncate_messages(chat_history, self.max_prompt_size, self.model_name) final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history]) # Assert # The original object has been modified. Verify certain properties. assert ( len(truncated_chat_history) == len(chat_history) + 1 ) # Because the system_prompt is popped off from the chat_messages list assert len(truncated_chat_history) < 10 assert len(truncated_chat_history) > 1 assert truncated_chat_history[0] != copy_big_chat_message assert initial_tokens > self.max_prompt_size assert final_tokens <= self.max_prompt_size def test_truncate_single_large_non_system_message(self): # Arrange big_chat_message = ChatMessage(role="user", content=f"{generate_content(11)}\nQuestion?") copy_big_chat_message = big_chat_message.copy() chat_messages = [big_chat_message] initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages]) # Act truncated_chat_history = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name) final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history]) # Assert # The original object has been modified. Verify certain properties assert initial_tokens > self.max_prompt_size assert final_tokens <= self.max_prompt_size assert len(chat_messages) == 1 assert truncated_chat_history[0] != copy_big_chat_message def test_truncate_single_large_question(self): # Arrange big_chat_message_content = " ".join(["hi"] * (self.max_prompt_size + 1)) big_chat_message = ChatMessage(role="user", content=big_chat_message_content) copy_big_chat_message = big_chat_message.copy() chat_messages = [big_chat_message] initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages]) # Act truncated_chat_history = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name) final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history]) # Assert # The original object has been modified. Verify certain properties assert initial_tokens > self.max_prompt_size assert final_tokens <= self.max_prompt_size assert len(chat_messages) == 1 assert truncated_chat_history[0] != copy_big_chat_message def generate_content(count): return " ".join([f"{index}" for index, _ in enumerate(range(count))]) def generate_chat_history(count): return [ ChatMessage(role="user" if index % 2 == 0 else "assistant", content=f"{index}") for index, _ in enumerate(range(count)) ]