# System Packages import sys import logging # External Packages import json # Internal Packages from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl from src.processor.markdown.markdown_to_jsonl import markdown_to_jsonl from src.processor.org_mode.org_to_jsonl import org_to_jsonl from src.search_type import image_search, text_search from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel from src.utils import state from src.utils.helpers import resolve_absolute_path from src.utils.rawconfig import FullConfig, ProcessorConfig logger = logging.getLogger(__name__) def configure_server(args, required=False): if args.config is None: if required: print('Exiting as Khoj is not configured. Configure the application to use it.') sys.exit(1) else: return else: state.config = args.config # Initialize the search model from Config state.model = configure_search(state.model, state.config, args.regenerate) # Initialize Processor from Config state.processor_config = configure_processor(args.config.processor) def configure_search(model: SearchModels, config: FullConfig, regenerate: bool, t: SearchType = None): # Initialize Org Notes Search if (t == SearchType.Org or t == None) and config.content_type.org: # Extract Entries, Generate Notes Embeddings model.orgmode_search = text_search.setup(org_to_jsonl, config.content_type.org, search_config=config.search_type.asymmetric, regenerate=regenerate) # Initialize Org Music Search if (t == SearchType.Music or t == None) and config.content_type.music: # Extract Entries, Generate Music Embeddings model.music_search = text_search.setup(org_to_jsonl, config.content_type.music, search_config=config.search_type.asymmetric, regenerate=regenerate) # Initialize Markdown Search if (t == SearchType.Markdown or t == None) and config.content_type.markdown: # Extract Entries, Generate Markdown Embeddings model.markdown_search = text_search.setup(markdown_to_jsonl, config.content_type.markdown, search_config=config.search_type.asymmetric, regenerate=regenerate) # Initialize Ledger Search if (t == SearchType.Ledger or t == None) and config.content_type.ledger: # Extract Entries, Generate Ledger Embeddings model.ledger_search = text_search.setup(beancount_to_jsonl, config.content_type.ledger, search_config=config.search_type.symmetric, regenerate=regenerate) # Initialize Image Search if (t == SearchType.Image or t == None) and config.content_type.image: # Extract Entries, Generate Image Embeddings model.image_search = image_search.setup(config.content_type.image, search_config=config.search_type.image, regenerate=regenerate) return model def configure_processor(processor_config: ProcessorConfig): if not processor_config: return processor = ProcessorConfigModel() # Initialize Conversation Processor if processor_config.conversation: processor.conversation = configure_conversation_processor(processor_config.conversation) return processor def configure_conversation_processor(conversation_processor_config): conversation_processor = ConversationProcessorConfigModel(conversation_processor_config) conversation_logfile = resolve_absolute_path(conversation_processor.conversation_logfile) if conversation_logfile.is_file(): # Load Metadata Logs from Conversation Logfile with conversation_logfile.open('r') as f: conversation_processor.meta_log = json.load(f) logger.info('Conversation logs loaded from disk.') else: # Initialize Conversation Logs conversation_processor.meta_log = {} conversation_processor.chat_session = "" return conversation_processor