# External Packages import os from fastapi.testclient import TestClient from pathlib import Path import pytest from fastapi.staticfiles import StaticFiles from fastapi import FastAPI import factory import os from fastapi import FastAPI app = FastAPI() # Internal Packages from khoj.configure import configure_processor, configure_routes, configure_search_types, configure_middleware from khoj.processor.plaintext.plaintext_to_jsonl import PlaintextToJsonl from khoj.search_type import image_search, text_search from khoj.utils.config import SearchModels from khoj.utils.constants import web_directory from khoj.utils.helpers import resolve_absolute_path from khoj.utils.rawconfig import ( ContentConfig, ConversationProcessorConfig, OfflineChatProcessorConfig, OpenAIProcessorConfig, ProcessorConfig, TextContentConfig, ImageContentConfig, SearchConfig, TextSearchConfig, ImageSearchConfig, ) from khoj.utils import state, fs_syncer from khoj.routers.indexer import configure_content from khoj.processor.org_mode.org_to_jsonl import OrgToJsonl from database.models import ( LocalOrgConfig, LocalMarkdownConfig, LocalPlaintextConfig, LocalPdfConfig, GithubConfig, KhojUser, GithubRepoConfig, ) @pytest.fixture(autouse=True) def enable_db_access_for_all_tests(db): pass class UserFactory(factory.django.DjangoModelFactory): class Meta: model = KhojUser username = factory.Faker("name") email = factory.Faker("email") password = factory.Faker("password") uuid = factory.Faker("uuid4") @pytest.fixture(scope="session") def search_config() -> SearchConfig: model_dir = resolve_absolute_path("~/.khoj/search") model_dir.mkdir(parents=True, exist_ok=True) search_config = SearchConfig() search_config.symmetric = TextSearchConfig( encoder="sentence-transformers/all-MiniLM-L6-v2", cross_encoder="cross-encoder/ms-marco-MiniLM-L-6-v2", model_directory=model_dir / "symmetric/", encoder_type=None, ) search_config.asymmetric = TextSearchConfig( encoder="sentence-transformers/multi-qa-MiniLM-L6-cos-v1", cross_encoder="cross-encoder/ms-marco-MiniLM-L-6-v2", model_directory=model_dir / "asymmetric/", encoder_type=None, ) search_config.image = ImageSearchConfig( encoder="sentence-transformers/clip-ViT-B-32", model_directory=model_dir / "image/", encoder_type=None, ) return search_config @pytest.mark.django_db @pytest.fixture def default_user(): return UserFactory() @pytest.fixture(scope="session") def search_models(search_config: SearchConfig): search_models = SearchModels() search_models.image_search = image_search.initialize_model(search_config.image) return search_models @pytest.fixture def anyio_backend(): return "asyncio" @pytest.mark.django_db @pytest.fixture(scope="function") def content_config(tmp_path_factory, search_models: SearchModels, default_user: KhojUser): content_dir = tmp_path_factory.mktemp("content") # Generate Image Embeddings from Test Images content_config = ContentConfig() content_config.image = ImageContentConfig( input_filter=None, input_directories=["tests/data/images"], embeddings_file=content_dir.joinpath("image_embeddings.pt"), batch_size=1, use_xmp_metadata=False, ) image_search.setup(content_config.image, search_models.image_search.image_encoder, regenerate=False) LocalOrgConfig.objects.create( input_files=None, input_filter=["tests/data/org/*.org"], index_heading_entries=False, user=default_user, ) text_search.setup(OrgToJsonl, get_sample_data("org"), regenerate=False, user=default_user) if os.getenv("GITHUB_PAT_TOKEN"): GithubConfig.objects.create( pat_token=os.getenv("GITHUB_PAT_TOKEN"), user=default_user, ) GithubRepoConfig.objects.create( owner="khoj-ai", name="lantern", branch="master", github_config=GithubConfig.objects.get(user=default_user), ) LocalPlaintextConfig.objects.create( input_files=None, input_filter=["tests/data/plaintext/*.txt", "tests/data/plaintext/*.md", "tests/data/plaintext/*.html"], user=default_user, ) return content_config @pytest.fixture(scope="session") def md_content_config(): markdown_config = LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], ) return markdown_config @pytest.fixture(scope="session") def processor_config(tmp_path_factory): openai_api_key = os.getenv("OPENAI_API_KEY") processor_dir = tmp_path_factory.mktemp("processor") # The conversation processor is the only configured processor # It needs an OpenAI API key to work. if not openai_api_key: return # Setup conversation processor, if OpenAI API key is set processor_config = ProcessorConfig() processor_config.conversation = ConversationProcessorConfig( openai=OpenAIProcessorConfig(api_key=openai_api_key), conversation_logfile=processor_dir.joinpath("conversation_logs.json"), ) return processor_config @pytest.fixture(scope="session") def processor_config_offline_chat(tmp_path_factory): processor_dir = tmp_path_factory.mktemp("processor") # Setup conversation processor processor_config = ProcessorConfig() offline_chat = OfflineChatProcessorConfig(enable_offline_chat=True) processor_config.conversation = ConversationProcessorConfig( offline_chat=offline_chat, conversation_logfile=processor_dir.joinpath("conversation_logs.json"), ) return processor_config @pytest.fixture(scope="session") def chat_client(md_content_config: ContentConfig, search_config: SearchConfig, processor_config: ProcessorConfig): # Initialize app state state.config.search_type = search_config state.SearchType = configure_search_types(state.config) # Index Markdown Content for Search all_files = fs_syncer.collect_files() state.content_index = configure_content( state.content_index, state.config.content_type, all_files, state.search_models ) # Initialize Processor from Config state.processor_config = configure_processor(processor_config) state.anonymous_mode = True app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def fastapi_app(): app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return app @pytest.fixture(scope="function") def client( content_config: ContentConfig, search_config: SearchConfig, processor_config: ProcessorConfig, default_user: KhojUser, ): state.config.content_type = content_config state.config.search_type = search_config state.SearchType = configure_search_types(state.config) # These lines help us Mock the Search models for these search types state.search_models.image_search = image_search.initialize_model(search_config.image) text_search.setup( OrgToJsonl, get_sample_data("org"), regenerate=False, user=default_user, ) state.content_index.image = image_search.setup( content_config.image, state.search_models.image_search, regenerate=False ) text_search.setup( PlaintextToJsonl, get_sample_data("plaintext"), regenerate=False, user=default_user, ) state.processor_config = configure_processor(processor_config) state.anonymous_mode = True configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def client_offline_chat( search_config: SearchConfig, processor_config_offline_chat: ProcessorConfig, content_config: ContentConfig, md_content_config, ): # Initialize app state state.config.content_type = md_content_config state.config.search_type = search_config state.SearchType = configure_search_types(state.config) # Index Markdown Content for Search state.search_models.image_search = image_search.initialize_model(search_config.image) all_files = fs_syncer.collect_files(state.config.content_type) state.content_index = configure_content( state.content_index, state.config.content_type, all_files, state.search_models ) # Initialize Processor from Config state.processor_config = configure_processor(processor_config_offline_chat) state.anonymous_mode = True configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def new_org_file(default_user: KhojUser, content_config: ContentConfig): # Setup org_config = LocalOrgConfig.objects.filter(user=default_user).first() input_filters = org_config.input_filter new_org_file = Path(input_filters[0]).parent / "new_file.org" new_org_file.touch() yield new_org_file # Cleanup if new_org_file.exists(): new_org_file.unlink() @pytest.fixture(scope="function") def org_config_with_only_new_file(new_org_file: Path, default_user: KhojUser): LocalOrgConfig.objects.update(input_files=[str(new_org_file)], input_filter=None) return LocalOrgConfig.objects.filter(user=default_user).first() @pytest.fixture(scope="function") def sample_org_data(): return get_sample_data("org") def get_sample_data(type): sample_data = { "org": { "readme.org": """ * Khoj /Allow natural language search on user content like notes, images using transformer based models/ All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline ** Dependencies - Python3 - [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]] ** Install #+begin_src shell git clone https://github.com/khoj-ai/khoj && cd khoj conda env create -f environment.yml conda activate khoj #+end_src""" }, "markdown": { "readme.markdown": """ # Khoj Allow natural language search on user content like notes, images using transformer based models All data is processed locally. User can interface with khoj app via [Emacs](./interface/emacs/khoj.el), API or Commandline ## Dependencies - Python3 - [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links) ## Install ```shell git clone conda env create -f environment.yml conda activate khoj ``` """ }, "plaintext": { "readme.txt": """ Khoj Allow natural language search on user content like notes, images using transformer based models All data is processed locally. User can interface with khoj app via Emacs, API or Commandline Dependencies - Python3 - Miniconda Install git clone conda env create -f environment.yml conda activate khoj """ }, } return sample_data[type]