from typing import Optional from fastapi import FastAPI from search_type import asymmetric import argparse import pathlib import uvicorn app = FastAPI() @app.get('/search') def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'): if q is None or q == '': print(f'No query param (q) passed in API call to initiate search') return {} user_query = q results_count = n if t == 'notes': # query notes hits = asymmetric.query_notes( q, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k) # collate and return results return asymmetric.collate_results(hits, entries, results_count) else: return {} if __name__ == '__main__': # Setup Argument Parser parser = argparse.ArgumentParser(description="Expose API for Semantic Search") parser.add_argument('--compressed-jsonl', '-j', type=pathlib.Path, default=pathlib.Path(".notes.jsonl.gz"), help="Compressed JSONL formatted notes file to compute embeddings from") parser.add_argument('--embeddings', '-e', type=pathlib.Path, default=pathlib.Path(".notes_embeddings.pt"), help="File to save/load model embeddings to/from") parser.add_argument('--verbose', action='count', help="Show verbose conversion logs. Default: 0") args = parser.parse_args() # Initialize Model bi_encoder, cross_encoder, top_k = asymmetric.initialize_model() # Extract Entries entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose) # Compute or Load Embeddings corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, args.verbose) # Start Application Server uvicorn.run(app)