#!/usr/bin/env python import json from sentence_transformers import SentenceTransformer, CrossEncoder, util import time import gzip import os import sys import torch import argparse import pathlib def initialize_model(): "Initialize model for assymetric semantic search. That is, where query smaller than results" bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3') # The bi-encoder encodes all entries to use for semantic search top_k = 100 # Number of entries we want to retrieve with the bi-encoder cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') # The cross-encoder re-ranks the results to improve quality return bi_encoder, cross_encoder, top_k def extract_entries(notesfile, verbose=False): "Load entries from compressed jsonl" entries = [] with gzip.open(str(notesfile.expanduser()), 'rt', encoding='utf8') as jsonl: for line in jsonl: note = json.loads(line.strip()) # Ignore title notes i.e notes with just headings and empty body if not "Body" in note or note["Body"].strip() == "": continue note_string = f'{note["Title"]}\t{note["Tags"] if "Tags" in note else ""}\n{note["Body"] if "Body" in note else ""}' entries.extend([note_string]) if verbose: print(f"Loaded {len(entries)} entries from {notesfile}") return entries def compute_embeddings(entries, bi_encoder, embeddings_file, verbose=False): "Compute (and Save) Embeddings or Load Pre-Computed Embeddings" # Load pre-computed embeddings from file if exists if embeddings_file.exists(): corpus_embeddings = torch.load(str(embeddings_file.expanduser())) if verbose: print(f"Loaded embeddings from {embeddings_file}") else: # Else compute the corpus_embeddings from scratch, which can take a while corpus_embeddings = bi_encoder.encode(entries, convert_to_tensor=True, show_progress_bar=True) torch.save(corpus_embeddings, str(embeddings_file.expanduser())) if verbose: print(f"Computed embeddings and save them to {embeddings_file}") return corpus_embeddings def query_notes(query, corpus_embeddings, entries, bi_encoder, cross_encoder, topk=100): "Search all notes for entries that answer the query" # Encode the query using the bi-encoder question_embedding = bi_encoder.encode(query, convert_to_tensor=True) # Find relevant entries for the query hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query # Score all retrieved entries using the cross-encoder cross_inp = [[query, entries[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Store cross-encoder scores in results dictionary for ranking for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] # Order results by cross encoder score followed by biencoder score hits.sort(key=lambda x: x['score'], reverse=True) # sort by biencoder score hits.sort(key=lambda x: x['cross-score'], reverse=True) # sort by cross encoder score return hits def render_results(hits, entries, count=5, display_biencoder_results=False): "Render the Results returned by Search for the Query" if display_biencoder_results: # Output of top hits from bi-encoder print("\n-------------------------\n") print(f"Top-{count} Bi-Encoder Retrieval hits") hits = sorted(hits, key=lambda x: x['score'], reverse=True) for hit in hits[0:count]: print(f"Score: {hit['score']:.3f}\n------------\n{entries[hit['corpus_id']]}") # Output of top hits from re-ranker print("\n-------------------------\n") print(f"Top-{count} Cross-Encoder Re-ranker hits") hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) for hit in hits[0:count]: print(f"CrossScore: {hit['cross-score']:.3f}\n-----------------\n{entries[hit['corpus_id']]}") if __name__ == '__main__': # Setup Argument Parser parser = argparse.ArgumentParser(description="Map Org-Mode notes into JSONL format") parser.add_argument('--jsonl-file', '-j', required=True, type=pathlib.Path, help="Input file for compressed JSONL formatted notes to compute embeddings from") parser.add_argument('--embeddings-file', '-e', type=pathlib.Path, help="File to save/load model embeddings to/from. Default: ./embeddings.pt") parser.add_argument('--results-count', '-n', default=5, type=int, help="Number of results to render. Default: 5") parser.add_argument('--interactive', action='store_true', default=False, help="Interactive mode allows user to run queries on the model. Default: true") parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false") args = parser.parse_args() # Initialize Model bi_encoder, cross_encoder, top_k = initialize_model() # Extract Entries entries = extract_entries(args.jsonl_file, args.verbose) # Compute or Load Embeddings corpus_embeddings = compute_embeddings(entries, bi_encoder, args.embeddings_file, args.verbose) # Run User Queries on Entries in Interactive Mode while args.interactive: # get query from user user_query = input("Enter your query: ") if user_query == "exit": exit(0) # query notes hits = query_notes(user_query, corpus_embeddings, entries, bi_encoder, cross_encoder, top_k) # render results render_results(hits, entries, count=args.results_count)