# External Packages import os from copy import deepcopy from fastapi.testclient import TestClient from pathlib import Path import pytest # Internal Packages from khoj.main import app from khoj.configure import configure_processor, configure_routes, configure_search_types from khoj.processor.markdown.markdown_to_jsonl import MarkdownToJsonl from khoj.search_type import image_search, text_search from khoj.utils.config import ImageContent, SearchModels, TextContent from khoj.utils.helpers import resolve_absolute_path from khoj.utils.rawconfig import ( ContentConfig, ConversationProcessorConfig, ProcessorConfig, TextContentConfig, GithubContentConfig, GithubRepoConfig, ImageContentConfig, SearchConfig, TextSearchConfig, ImageSearchConfig, ) from khoj.utils import state from khoj.processor.jsonl.jsonl_to_jsonl import JsonlToJsonl from khoj.processor.org_mode.org_to_jsonl import OrgToJsonl from khoj.search_filter.date_filter import DateFilter from khoj.search_filter.word_filter import WordFilter from khoj.search_filter.file_filter import FileFilter @pytest.fixture(scope="session") def search_config() -> SearchConfig: model_dir = resolve_absolute_path("~/.khoj/search") model_dir.mkdir(parents=True, exist_ok=True) search_config = SearchConfig() search_config.symmetric = TextSearchConfig( encoder="sentence-transformers/all-MiniLM-L6-v2", cross_encoder="cross-encoder/ms-marco-MiniLM-L-6-v2", model_directory=model_dir / "symmetric/", encoder_type=None, ) search_config.asymmetric = TextSearchConfig( encoder="sentence-transformers/multi-qa-MiniLM-L6-cos-v1", cross_encoder="cross-encoder/ms-marco-MiniLM-L-6-v2", model_directory=model_dir / "asymmetric/", encoder_type=None, ) search_config.image = ImageSearchConfig( encoder="sentence-transformers/clip-ViT-B-32", model_directory=model_dir / "image/", encoder_type=None, ) return search_config @pytest.fixture(scope="session") def search_models(search_config: SearchConfig): search_models = SearchModels() search_models.text_search = text_search.initialize_model(search_config.asymmetric) search_models.image_search = image_search.initialize_model(search_config.image) return search_models @pytest.fixture(scope="session") def content_config(tmp_path_factory, search_models: SearchModels, search_config: SearchConfig): content_dir = tmp_path_factory.mktemp("content") # Generate Image Embeddings from Test Images content_config = ContentConfig() content_config.image = ImageContentConfig( input_filter=None, input_directories=["tests/data/images"], embeddings_file=content_dir.joinpath("image_embeddings.pt"), batch_size=1, use_xmp_metadata=False, ) image_search.setup(content_config.image, search_models.image_search.image_encoder, regenerate=False) # Generate Notes Embeddings from Test Notes content_config.org = TextContentConfig( input_files=None, input_filter=["tests/data/org/*.org"], compressed_jsonl=content_dir.joinpath("notes.jsonl"), embeddings_file=content_dir.joinpath("note_embeddings.pt"), ) filters = [DateFilter(), WordFilter(), FileFilter()] text_search.setup( OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=False, filters=filters ) content_config.plugins = { "plugin1": TextContentConfig( input_files=[content_dir.joinpath("notes.jsonl")], input_filter=None, compressed_jsonl=content_dir.joinpath("plugin.jsonl.gz"), embeddings_file=content_dir.joinpath("plugin_embeddings.pt"), ) } content_config.github = GithubContentConfig( pat_token=os.getenv("GITHUB_PAT_TOKEN", ""), repos=[ GithubRepoConfig( owner="khoj-ai", name="lantern", branch="master", ) ], compressed_jsonl=content_dir.joinpath("github.jsonl.gz"), embeddings_file=content_dir.joinpath("github_embeddings.pt"), ) filters = [DateFilter(), WordFilter(), FileFilter()] text_search.setup( JsonlToJsonl, content_config.plugins["plugin1"], search_models.text_search.bi_encoder, regenerate=False, filters=filters, ) return content_config @pytest.fixture(scope="session") def md_content_config(tmp_path_factory): content_dir = tmp_path_factory.mktemp("content") # Generate Embeddings for Markdown Content content_config = ContentConfig() content_config.markdown = TextContentConfig( input_files=None, input_filter=["tests/data/markdown/*.markdown"], compressed_jsonl=content_dir.joinpath("markdown.jsonl"), embeddings_file=content_dir.joinpath("markdown_embeddings.pt"), ) return content_config @pytest.fixture(scope="session") def processor_config(tmp_path_factory): openai_api_key = os.getenv("OPENAI_API_KEY") processor_dir = tmp_path_factory.mktemp("processor") # The conversation processor is the only configured processor # It needs an OpenAI API key to work. if not openai_api_key: return # Setup conversation processor, if OpenAI API key is set processor_config = ProcessorConfig() processor_config.conversation = ConversationProcessorConfig( openai_api_key=openai_api_key, conversation_logfile=processor_dir.joinpath("conversation_logs.json"), ) return processor_config @pytest.fixture(scope="session") def chat_client(md_content_config: ContentConfig, search_config: SearchConfig, processor_config: ProcessorConfig): # Initialize app state state.config.content_type = md_content_config state.config.search_type = search_config state.SearchType = configure_search_types(state.config) # Index Markdown Content for Search filters = [DateFilter(), WordFilter(), FileFilter()] state.search_models.text_search = text_search.initialize_model(search_config.asymmetric) state.content_index.markdown = text_search.setup( MarkdownToJsonl, md_content_config.markdown, state.search_models.text_search.bi_encoder, regenerate=False, filters=filters, ) # Initialize Processor from Config state.processor_config = configure_processor(processor_config) configure_routes(app) return TestClient(app) @pytest.fixture(scope="function") def client(content_config: ContentConfig, search_config: SearchConfig, processor_config: ProcessorConfig): state.config.content_type = content_config state.config.search_type = search_config state.SearchType = configure_search_types(state.config) # These lines help us Mock the Search models for these search types state.search_models.text_search = text_search.initialize_model(search_config.asymmetric) state.search_models.image_search = image_search.initialize_model(search_config.image) state.content_index.org = text_search.setup( OrgToJsonl, content_config.org, state.search_models.text_search.bi_encoder, regenerate=False ) state.content_index.image = image_search.setup( content_config.image, state.search_models.image_search, regenerate=False ) configure_routes(app) return TestClient(app) @pytest.fixture(scope="function") def new_org_file(content_config: ContentConfig): # Setup new_org_file = Path(content_config.org.input_filter[0]).parent / "new_file.org" new_org_file.touch() yield new_org_file # Cleanup if new_org_file.exists(): new_org_file.unlink() @pytest.fixture(scope="function") def org_config_with_only_new_file(content_config: ContentConfig, new_org_file: Path): new_org_config = deepcopy(content_config.org) new_org_config.input_files = [f"{new_org_file}"] new_org_config.input_filter = None return new_org_config