# Khoj 🦅 [![build](https://github.com/debanjum/khoj/actions/workflows/build.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/build.yml) [![test](https://github.com/debanjum/khoj/actions/workflows/test.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/test.yml) [![publish](https://github.com/debanjum/khoj/actions/workflows/publish.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/publish.yml) *A natural language search engine for your personal notes, transactions and images* ## Table of Contents - [Features](#Features) - [Demo](#Demo) - [Description](#Description) - [Analysis](#Analysis) - [Interfaces](#Interfaces) - [Architecture](#Architecture) - [Setup](#Setup) - [Install](#1-Install) - [Configure](#2-Configure) - [Run](#3-Run) - [Use](#Use) - [Interfaces](#Interfaces-1) - [Query Filters](#Query-filters) - [Upgrade](#Upgrade) - [Troubleshoot](#Troubleshoot) - [Miscellaneous](#Miscellaneous) - [Performance](#Performance) - [Query Performance](#Query-performance) - [Indexing Performance](#Indexing-performance) - [Miscellaneous](#Miscellaneous-1) - [Development](#Development) - [Setup](#Setup) - [Using Pip](#Using-Pip) - [Using Docker](#Using-Docker) - [Using Conda](#Test) - [Test](#Test) - [Credits](#Credits) ## Features - **Natural**: Advanced natural language understanding using Transformer based ML Models - **Local**: Your personal data stays local. All search, indexing is done on your machine[\*](https://github.com/debanjum/khoj#miscellaneous) - **Incremental**: Incremental search for a fast, search-as-you-type experience - **Pluggable**: Modular architecture makes it easy to plug in new data sources, frontends and ML models - **Multiple Sources**: Search your Org-mode and Markdown notes, Beancount transactions and Photos - **Multiple Interfaces**: Search using a [Web Browser](./src/interface/web/index.html), [Emacs](./src/interface/emacs/khoj.el) or the [API](http://localhost:8000/docs) ## Demo https://user-images.githubusercontent.com/6413477/184735169-92c78bf1-d827-4663-9087-a1ea194b8f4b.mp4 ### Description - Install Khoj via pip - Start Khoj app - Add this readme and [khoj.el readme](https://github.com/debanjum/khoj/tree/master/src/interface/emacs) as org-mode for Khoj to index - Search \"*Setup editor*\" on the Web and Emacs. Re-rank the results for better accuracy - Top result is what we are looking for, the [section to Install Khoj.el on Emacs](https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation) ### Analysis - The results do not have any words used in the query - *Based on the top result it seems the re-ranking model understands that Emacs is an editor?* - The results incrementally update as the query is entered - The results are re-ranked, for better accuracy, once user hits enter ### Interfaces ![](https://github.com/debanjum/khoj/blob/master/docs/interfaces.png) ## Architecture ![](https://github.com/debanjum/khoj/blob/master/docs/khoj_architecture.png) ## Setup ### 1. Install ```shell pip install khoj-assistant ``` ### 2. Start App ```shell khoj ``` ### 3. Configure 1. Enable content types and point to files to search in the First Run Screen that pops up on app start 2. Click `Configure` and wait. The app will download ML models and index the content for search ## Use ### Interfaces - **Khoj via Web** - Open via desktop interface or directly - **Khoj via Emacs** - [Install](https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation) [khoj.el](./src/interface/emacs/khoj.el) - Run `M-x khoj ` - **Khoj via API** - See the Khoj FastAPI [Swagger Docs](http://localhost:8000/docs), [ReDocs](http://localhost:8000/redocs) ### Query Filters Use structured query syntax to filter the natural language search results - **Word Filter**: Get entries that include/exclude a specified term - Entries that contain term_to_include: `+"term_to_include"` - Entries that contain term_to_exclude: `-"term_to_exclude"` - **Date Filter**: Get entries containing dates in YYYY-MM-DD format from specified date (range) - Entries from April 1st 1984: `dt:"1984-04-01"` - Entries after March 31st 1984: `dt>="1984-04-01"` - Entries before April 2nd 1984 : `dt<="1984-04-01"` - **File Filter**: Get entries from a specified file - Entries from incoming.org file: `file:"incoming.org"` - Combined Example - `what is the meaning of life? file:"1984.org" dt>="1984-01-01" dt<="1985-01-01" -"big" -"brother"` - Adds all filters to the natural language query. It should return entries - from the file *1984.org* - containing dates from the year *1984* - excluding words *"big"* and *"brother"* - that best match the natural language query *"what is the meaning of life?"* ## Upgrade ```shell pip install --upgrade khoj-assistant ``` ## Troubleshoot - Symptom: Errors out complaining about Tensors mismatch, null etc - Mitigation: Disable `image` search using the desktop GUI - Symptom: Errors out with \"Killed\" in error message in Docker - Fix: Increase RAM available to Docker Containers in Docker Settings - Refer: [StackOverflow Solution](https://stackoverflow.com/a/50770267), [Configure Resources on Docker for Mac](https://docs.docker.com/desktop/mac/#resources) ## Miscellaneous - The beta [chat](http://localhost:8000/api/beta/chat) and [search](http://localhost:8000/api/beta/search) API endpoints use [OpenAI API](https://openai.com/api/) - It is disabled by default - To use it add your `openai-api-key` via the app configure screen - Warning: *If you use the above beta APIs, your query and top result(s) will be sent to OpenAI for processing* ## Performance ### Query performance - Semantic search using the bi-encoder is fairly fast at \<50 ms - Reranking using the cross-encoder is slower at \<2s on 15 results. Tweak `top_k` to tradeoff speed for accuracy of results - Filters in query (e.g by file, word or date) usually add \<20ms to query latency ### Indexing performance - Indexing is more strongly impacted by the size of the source data - Indexing 100K+ line corpus of notes takes about 10 minutes - Indexing 4000+ images takes about 15 minutes and more than 8Gb of RAM - Note: *It should only take this long on the first run* as the index is incrementally updated ### Miscellaneous - Testing done on a Mac M1 and a \>100K line corpus of notes - Search, indexing on a GPU has not been tested yet ## Development ### Setup #### Using Pip ##### 1. Install ```shell git clone https://github.com/debanjum/khoj && cd khoj python3 -m venv .venv && source .venv/bin/activate pip install -e . ``` ##### 2. Configure - Copy the `config/khoj_sample.yml` to `~/.khoj/khoj.yml` - Set `input-files` or `input-filter` in each relevant `content-type` section of `~/.khoj/khoj.yml` - Set `input-directories` field in `image` `content-type` section - Delete `content-type` and `processor` sub-section(s) irrelevant for your use-case ##### 3. Run ```shell khoj -vv ``` Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML ##### 4. Upgrade ```shell # To Upgrade To Latest Stable Release # Maps to the latest tagged version of khoj on master branch pip install --upgrade khoj-assistant # To Upgrade To Latest Pre-Release # Maps to the latest commit on the master branch pip install --upgrade --pre khoj-assistant # To Upgrade To Specific Development Release. # Useful to test, review a PR. # Note: khoj-assistant is published to test PyPi on creating a PR pip install -i https://test.pypi.org/simple/ khoj-assistant==0.1.5.dev57166025766 ``` #### Using Docker ##### 1. Clone ```shell git clone https://github.com/debanjum/khoj && cd khoj ``` ##### 2. Configure - **Required**: Update [docker-compose.yml](./docker-compose.yml) to mount your images, (org-mode or markdown) notes and beancount directories - **Optional**: Edit application configuration in [khoj_docker.yml](./config/khoj_docker.yml) ##### 3. Run ```shell docker-compose up -d ``` *Note: The first run will take time. Let it run, it\'s mostly not hung, just generating embeddings* ##### 4. Upgrade ```shell docker-compose build --pull ``` #### Using Conda ##### 1. Install Dependencies - [Install Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html) ##### 2. Install Khoj ```shell git clone https://github.com/debanjum/khoj && cd khoj conda env create -f config/environment.yml conda activate khoj python3 -m pip install pyqt6 # As conda does not support pyqt6 yet ``` ##### 3. Configure - Copy the `config/khoj_sample.yml` to `~/.khoj/khoj.yml` - Set `input-files` or `input-filter` in each relevant `content-type` section of `~/.khoj/khoj.yml` - Set `input-directories` field in `image` `content-type` section - Delete `content-type`, `processor` sub-sections irrelevant for your use-case ##### 4. Run ```shell python3 -m src.main -vv ``` Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML ##### 5. Upgrade ```shell cd khoj git pull origin master conda deactivate khoj conda env update -f config/environment.yml conda activate khoj ``` ### Test ```shell pytest ``` ## Credits - [Multi-QA MiniLM Model](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1), [All MiniLM Model](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) for Text Search. See [SBert Documentation](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) - [OpenAI CLIP Model](https://github.com/openai/CLIP) for Image Search. See [SBert Documentation](https://www.sbert.net/examples/applications/image-search/README.html) - Charles Cave for [OrgNode Parser](http://members.optusnet.com.au/~charles57/GTD/orgnode.html) - [Org.js](https://mooz.github.io/org-js/) to render Org-mode results on the Web interface - [Markdown-it](https://github.com/markdown-it/markdown-it) to render Markdown results on the Web interface