# External Packages import os from fastapi.testclient import TestClient from pathlib import Path import pytest from fastapi.staticfiles import StaticFiles from fastapi import FastAPI import os from fastapi import FastAPI # Internal Packages from khoj.configure import configure_routes, configure_search_types, configure_middleware from khoj.processor.embeddings import CrossEncoderModel, EmbeddingsModel from khoj.processor.plaintext.plaintext_to_entries import PlaintextToEntries from khoj.search_type import image_search, text_search from khoj.utils.config import SearchModels from khoj.utils.constants import web_directory from khoj.utils.helpers import resolve_absolute_path from khoj.utils.rawconfig import ( ContentConfig, ImageContentConfig, SearchConfig, ImageSearchConfig, ) from khoj.utils import state, fs_syncer from khoj.routers.indexer import configure_content from khoj.processor.org_mode.org_to_entries import OrgToEntries from khoj.database.models import ( KhojApiUser, LocalOrgConfig, LocalMarkdownConfig, LocalPlaintextConfig, GithubConfig, KhojUser, GithubRepoConfig, ) from tests.helpers import ( UserFactory, ChatModelOptionsFactory, OpenAIProcessorConversationConfigFactory, OfflineChatProcessorConversationConfigFactory, UserConversationProcessorConfigFactory, SubscriptionFactory, ) @pytest.fixture(autouse=True) def enable_db_access_for_all_tests(db): pass @pytest.fixture(scope="session") def search_config() -> SearchConfig: state.embeddings_model = EmbeddingsModel() state.cross_encoder_model = CrossEncoderModel() model_dir = resolve_absolute_path("~/.khoj/search") model_dir.mkdir(parents=True, exist_ok=True) search_config = SearchConfig() search_config.image = ImageSearchConfig( encoder="sentence-transformers/clip-ViT-B-32", model_directory=model_dir / "image/", encoder_type=None, ) return search_config @pytest.mark.django_db @pytest.fixture def default_user(): user = UserFactory() SubscriptionFactory(user=user) return user @pytest.mark.django_db @pytest.fixture def default_user2(): if KhojUser.objects.filter(username="default").exists(): return KhojUser.objects.get(username="default") user = KhojUser.objects.create( username="default", email="default@example.com", password="default", ) SubscriptionFactory(user=user) return user @pytest.mark.django_db @pytest.fixture def default_user3(): """ This user should not have any data associated with it """ if KhojUser.objects.filter(username="default3").exists(): return KhojUser.objects.get(username="default3") user = KhojUser.objects.create( username="default3", email="default3@example.com", password="default3", ) SubscriptionFactory(user=user) return user @pytest.mark.django_db @pytest.fixture def api_user(default_user): if KhojApiUser.objects.filter(user=default_user).exists(): return KhojApiUser.objects.get(user=default_user) return KhojApiUser.objects.create( user=default_user, name="api-key", token="kk-secret", ) @pytest.mark.django_db @pytest.fixture def api_user2(default_user2): if KhojApiUser.objects.filter(user=default_user2).exists(): return KhojApiUser.objects.get(user=default_user2) return KhojApiUser.objects.create( user=default_user2, name="api-key", token="kk-diff-secret", ) @pytest.mark.django_db @pytest.fixture def api_user3(default_user3): if KhojApiUser.objects.filter(user=default_user3).exists(): return KhojApiUser.objects.get(user=default_user3) return KhojApiUser.objects.create( user=default_user3, name="api-key", token="kk-diff-secret-3", ) @pytest.fixture(scope="session") def search_models(search_config: SearchConfig): search_models = SearchModels() search_models.image_search = image_search.initialize_model(search_config.image) return search_models @pytest.fixture def anyio_backend(): return "asyncio" @pytest.mark.django_db @pytest.fixture(scope="function") def content_config(tmp_path_factory, search_models: SearchModels, default_user: KhojUser): content_dir = tmp_path_factory.mktemp("content") # Generate Image Embeddings from Test Images content_config = ContentConfig() content_config.image = ImageContentConfig( input_filter=None, input_directories=["tests/data/images"], embeddings_file=content_dir.joinpath("image_embeddings.pt"), batch_size=1, use_xmp_metadata=False, ) image_search.setup(content_config.image, search_models.image_search.image_encoder, regenerate=False) LocalOrgConfig.objects.create( input_files=None, input_filter=["tests/data/org/*.org"], index_heading_entries=False, user=default_user, ) text_search.setup(OrgToEntries, get_sample_data("org"), regenerate=False, user=default_user) if os.getenv("GITHUB_PAT_TOKEN"): GithubConfig.objects.create( pat_token=os.getenv("GITHUB_PAT_TOKEN"), user=default_user, ) GithubRepoConfig.objects.create( owner="khoj-ai", name="lantern", branch="master", github_config=GithubConfig.objects.get(user=default_user), ) LocalPlaintextConfig.objects.create( input_files=None, input_filter=["tests/data/plaintext/*.txt", "tests/data/plaintext/*.md", "tests/data/plaintext/*.html"], user=default_user, ) return content_config @pytest.fixture(scope="session") def md_content_config(): markdown_config = LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], ) return markdown_config @pytest.fixture(scope="function") def chat_client(search_config: SearchConfig, default_user2: KhojUser): # Initialize app state state.config.search_type = search_config state.SearchType = configure_search_types() LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], user=default_user2, ) # Index Markdown Content for Search all_files = fs_syncer.collect_files(user=default_user2) state.content_index, _ = configure_content( state.content_index, state.config.content_type, all_files, state.search_models, user=default_user2 ) # Initialize Processor from Config if os.getenv("OPENAI_API_KEY"): chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai") OpenAIProcessorConversationConfigFactory() UserConversationProcessorConfigFactory(user=default_user2, setting=chat_model) state.anonymous_mode = True app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def chat_client_no_background(search_config: SearchConfig, default_user2: KhojUser): # Initialize app state state.config.search_type = search_config state.SearchType = configure_search_types() # Initialize Processor from Config if os.getenv("OPENAI_API_KEY"): chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai") OpenAIProcessorConversationConfigFactory() UserConversationProcessorConfigFactory(user=default_user2, setting=chat_model) state.anonymous_mode = True app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def fastapi_app(): app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return app @pytest.fixture(scope="function") def client( content_config: ContentConfig, search_config: SearchConfig, api_user: KhojApiUser, ): state.config.content_type = content_config state.config.search_type = search_config state.SearchType = configure_search_types() state.embeddings_model = EmbeddingsModel() state.cross_encoder_model = CrossEncoderModel() # These lines help us Mock the Search models for these search types state.search_models.image_search = image_search.initialize_model(search_config.image) text_search.setup( OrgToEntries, get_sample_data("org"), regenerate=False, user=api_user.user, ) state.content_index.image = image_search.setup( content_config.image, state.search_models.image_search, regenerate=False ) text_search.setup( PlaintextToEntries, get_sample_data("plaintext"), regenerate=False, user=api_user.user, ) state.anonymous_mode = False app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def client_offline_chat(search_config: SearchConfig, default_user2: KhojUser): # Initialize app state state.config.search_type = search_config state.SearchType = configure_search_types() LocalMarkdownConfig.objects.create( input_files=None, input_filter=["tests/data/markdown/*.markdown"], user=default_user2, ) all_files = fs_syncer.collect_files(user=default_user2) configure_content( state.content_index, state.config.content_type, all_files, state.search_models, user=default_user2 ) # Initialize Processor from Config OfflineChatProcessorConversationConfigFactory(enabled=True) UserConversationProcessorConfigFactory(user=default_user2) state.anonymous_mode = True app = FastAPI() configure_routes(app) configure_middleware(app) app.mount("/static", StaticFiles(directory=web_directory), name="static") return TestClient(app) @pytest.fixture(scope="function") def new_org_file(default_user: KhojUser, content_config: ContentConfig): # Setup org_config = LocalOrgConfig.objects.filter(user=default_user).first() input_filters = org_config.input_filter new_org_file = Path(input_filters[0]).parent / "new_file.org" new_org_file.touch() yield new_org_file # Cleanup if new_org_file.exists(): new_org_file.unlink() @pytest.fixture(scope="function") def org_config_with_only_new_file(new_org_file: Path, default_user: KhojUser): LocalOrgConfig.objects.update(input_files=[str(new_org_file)], input_filter=None) return LocalOrgConfig.objects.filter(user=default_user).first() @pytest.fixture(scope="function") def sample_org_data(): return get_sample_data("org") def get_sample_data(type): sample_data = { "org": { "elisp.org": """ * Emacs Khoj /An Emacs interface for [[https://github.com/khoj-ai/khoj][khoj]]/ ** Requirements - Install and Run [[https://github.com/khoj-ai/khoj][khoj]] ** Installation *** Direct - Put ~khoj.el~ in your Emacs load path. For e.g ~/.emacs.d/lisp - Load via ~use-package~ in your ~/.emacs.d/init.el or .emacs file by adding below snippet #+begin_src elisp ;; Khoj Package (use-package khoj :load-path "~/.emacs.d/lisp/khoj.el" :bind ("C-c s" . 'khoj)) #+end_src *** Using [[https://github.com/quelpa/quelpa#installation][Quelpa]] - Ensure [[https://github.com/quelpa/quelpa#installation][Quelpa]], [[https://github.com/quelpa/quelpa-use-package#installation][quelpa-use-package]] are installed - Add below snippet to your ~/.emacs.d/init.el or .emacs config file and execute it. #+begin_src elisp ;; Khoj Package (use-package khoj :quelpa (khoj :fetcher url :url "https://raw.githubusercontent.com/khoj-ai/khoj/master/interface/emacs/khoj.el") :bind ("C-c s" . 'khoj)) #+end_src ** Usage 1. Call ~khoj~ using keybinding ~C-c s~ or ~M-x khoj~ 2. Enter Query in Natural Language e.g "What is the meaning of life?" "What are my life goals?" 3. Wait for results *Note: It takes about 15s on a Mac M1 and a ~100K lines corpus of org-mode files* 4. (Optional) Narrow down results further Include/Exclude specific words from results by adding to query e.g "What is the meaning of life? -god +none" """, "readme.org": """ * Khoj /Allow natural language search on user content like notes, images using transformer based models/ All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline ** Dependencies - Python3 - [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]] ** Install #+begin_src shell git clone https://github.com/khoj-ai/khoj && cd khoj conda env create -f environment.yml conda activate khoj #+end_src""", }, "markdown": { "readme.markdown": """ # Khoj Allow natural language search on user content like notes, images using transformer based models All data is processed locally. User can interface with khoj app via [Emacs](./interface/emacs/khoj.el), API or Commandline ## Dependencies - Python3 - [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links) ## Install ```shell git clone conda env create -f environment.yml conda activate khoj ``` """ }, "plaintext": { "readme.txt": """ Khoj Allow natural language search on user content like notes, images using transformer based models All data is processed locally. User can interface with khoj app via Emacs, API or Commandline Dependencies - Python3 - Miniconda Install git clone conda env create -f environment.yml conda activate khoj """ }, } return sample_data[type]