mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 23:48:56 +01:00
82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
from typing import Optional
|
|
from fastapi import FastAPI
|
|
from search_type import asymmetric
|
|
from processor.org_mode.org_to_jsonl import org_to_jsonl
|
|
from utils.helpers import is_none_or_empty
|
|
import argparse
|
|
import pathlib
|
|
import uvicorn
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
@app.get('/search')
|
|
def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
|
|
if q is None or q == '':
|
|
print(f'No query param (q) passed in API call to initiate search')
|
|
return {}
|
|
|
|
user_query = q
|
|
results_count = n
|
|
|
|
if t == 'notes':
|
|
# query notes
|
|
hits = asymmetric.query_notes(
|
|
user_query,
|
|
corpus_embeddings,
|
|
entries,
|
|
bi_encoder,
|
|
cross_encoder,
|
|
top_k)
|
|
|
|
# collate and return results
|
|
return asymmetric.collate_results(hits, entries, results_count)
|
|
|
|
else:
|
|
return {}
|
|
|
|
|
|
@app.get('/regenerate')
|
|
def regenerate():
|
|
org_to_jsonl(args.input_files, args.input_filter, args.compressed_jsonl, args.verbose)
|
|
|
|
# Extract Entries
|
|
global entries
|
|
entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose)
|
|
|
|
# Compute or Load Embeddings
|
|
global corpus_embeddings
|
|
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, regenerate=True, verbose=args.verbose)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Setup Argument Parser
|
|
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
|
|
parser.add_argument('--input-files', '-i', nargs='*', help="List of org-mode files to process")
|
|
parser.add_argument('--input-filter', type=str, default=None, help="Regex filter for org-mode files to process")
|
|
parser.add_argument('--compressed-jsonl', '-j', type=pathlib.Path, default=pathlib.Path(".notes.jsonl.gz"), help="Compressed JSONL formatted notes file to compute embeddings from")
|
|
parser.add_argument('--embeddings', '-e', type=pathlib.Path, default=pathlib.Path(".notes_embeddings.pt"), help="File to save/load model embeddings to/from")
|
|
parser.add_argument('--regenerate', action='store_true', default=False, help="Regenerate embeddings from org-mode files. Default: false")
|
|
parser.add_argument('--verbose', action='count', default=0, help="Show verbose conversion logs. Default: 0")
|
|
args = parser.parse_args()
|
|
|
|
# Input Validation
|
|
if is_none_or_empty(args.input_files) and is_none_or_empty(args.input_filter):
|
|
print("At least one of org-files or org-file-filter is required to be specified")
|
|
exit(1)
|
|
|
|
# Initialize Model
|
|
bi_encoder, cross_encoder, top_k = asymmetric.initialize_model()
|
|
|
|
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
|
if not args.compressed_jsonl.exists() or args.regenerate:
|
|
org_to_jsonl(args.input_files, args.input_filter, args.compressed_jsonl, args.verbose)
|
|
|
|
# Extract Entries
|
|
entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose)
|
|
|
|
# Compute or Load Embeddings
|
|
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, regenerate=args.regenerate, verbose=args.verbose)
|
|
|
|
# Start Application Server
|
|
uvicorn.run(app)
|