1ba7fa66e5
- Add instruction to using Docker with README - Use the ./tests/data folder in docker_sample_conifg.yml so it can work right away for users |
||
---|---|---|
.github/workflows | ||
src | ||
tests | ||
views | ||
.gitignore | ||
docker-compose.yml | ||
docker_sample_config.yml | ||
Dockerfile | ||
environment.yml | ||
LICENSE | ||
README.org | ||
sample_config.yml |
Semantic Search
Allow natural language search on user content like notes, images, transactions using transformer based models
All data is processed locally. User can interface with semantic-search app via Emacs, API or Commandline
Setup
Setup using Docker
1. Clone Repository
git clone https://github.com/debanjum/semantic-search && cd semantic-search
2. Configure
Add Content Directories for Semantic Search to Docker-Compose Update docker-compose.yml to mount your images, org-mode notes, ledger/beancount directories If required, edit config settings in docker_sample_config.yml.
3. Run
docker-compose up -d
Setup on Local Machine
1. Install Dependencies
- Install Python3 [Required[
- Install Conda [Required]
-
Install Exiftool [Optional]
sudo apt-get -y install libimage-exiftool-perl
2. Install Semantic Search
git clone https://github.com/debanjum/semantic-search && cd semantic-search
conda env create -f environment.yml
conda activate semantic-search
3. Configure
Configure application search types and their underlying data source/files in sample_config.yml
Use the sample_config.yml
as reference
4. Run
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
python3 -m src.main -c=sample_config.yml -vv
Use
-
Semantic Search via Emacs
- Install semantic-search.el
- Run
M-x semantic-search <user-query>
-
Semantic Search via API
- Query:
GET
http://localhost:8000/search?q="What is the meaning of life"&t=notes - Regenerate Embeddings:
GET
http://localhost:8000/regenerate - Semantic Search API Docs
- Query:
-
UI to Edit Config
Upgrade
Using Docker
docker-compose up
On Local Machine
cd semantic-search
git pull origin master
conda env update -f environment.yml
conda activate semantic-search
Acknowledgments
- MiniLM Model for Asymmetric Text Search. See SBert Documentation
- OpenAI CLIP Model for Image Search. See SBert Documentation
- Charles Cave for OrgNode Parser
- Sven Marnach for PyExifTool