khoj/tests/conftest.py
2023-11-17 15:26:55 -08:00

483 lines
14 KiB
Python

# External Packages
import os
from fastapi.testclient import TestClient
from pathlib import Path
import pytest
from fastapi.staticfiles import StaticFiles
from fastapi import FastAPI
import os
from fastapi import FastAPI
app = FastAPI()
# Internal Packages
from khoj.configure import configure_routes, configure_search_types, configure_middleware
from khoj.processor.embeddings import CrossEncoderModel, EmbeddingsModel
from khoj.processor.plaintext.plaintext_to_entries import PlaintextToEntries
from khoj.search_type import image_search, text_search
from khoj.utils.config import SearchModels
from khoj.utils.constants import web_directory
from khoj.utils.helpers import resolve_absolute_path
from khoj.utils.rawconfig import (
ContentConfig,
ImageContentConfig,
SearchConfig,
ImageSearchConfig,
)
from khoj.utils import state, fs_syncer
from khoj.routers.indexer import configure_content
from khoj.processor.org_mode.org_to_entries import OrgToEntries
from database.models import (
KhojApiUser,
LocalOrgConfig,
LocalMarkdownConfig,
LocalPlaintextConfig,
GithubConfig,
KhojUser,
GithubRepoConfig,
)
from tests.helpers import (
UserFactory,
ChatModelOptionsFactory,
OpenAIProcessorConversationConfigFactory,
OfflineChatProcessorConversationConfigFactory,
UserConversationProcessorConfigFactory,
SubscriptionFactory,
)
@pytest.fixture(autouse=True)
def enable_db_access_for_all_tests(db):
pass
@pytest.fixture(scope="session")
def search_config() -> SearchConfig:
state.embeddings_model = EmbeddingsModel()
state.cross_encoder_model = CrossEncoderModel()
model_dir = resolve_absolute_path("~/.khoj/search")
model_dir.mkdir(parents=True, exist_ok=True)
search_config = SearchConfig()
search_config.image = ImageSearchConfig(
encoder="sentence-transformers/clip-ViT-B-32",
model_directory=model_dir / "image/",
encoder_type=None,
)
return search_config
@pytest.mark.django_db
@pytest.fixture
def default_user():
user = UserFactory()
SubscriptionFactory(user=user)
return user
@pytest.mark.django_db
@pytest.fixture
def default_user2():
if KhojUser.objects.filter(username="default").exists():
return KhojUser.objects.get(username="default")
user = KhojUser.objects.create(
username="default",
email="default@example.com",
password="default",
)
SubscriptionFactory(user=user)
return user
@pytest.mark.django_db
@pytest.fixture
def default_user3():
"""
This user should not have any data associated with it
"""
if KhojUser.objects.filter(username="default3").exists():
return KhojUser.objects.get(username="default3")
user = KhojUser.objects.create(
username="default3",
email="default3@example.com",
password="default3",
)
SubscriptionFactory(user=user)
return user
@pytest.mark.django_db
@pytest.fixture
def api_user(default_user):
if KhojApiUser.objects.filter(user=default_user).exists():
return KhojApiUser.objects.get(user=default_user)
return KhojApiUser.objects.create(
user=default_user,
name="api-key",
token="kk-secret",
)
@pytest.mark.django_db
@pytest.fixture
def api_user2(default_user2):
if KhojApiUser.objects.filter(user=default_user2).exists():
return KhojApiUser.objects.get(user=default_user2)
return KhojApiUser.objects.create(
user=default_user2,
name="api-key",
token="kk-diff-secret",
)
@pytest.mark.django_db
@pytest.fixture
def api_user3(default_user3):
if KhojApiUser.objects.filter(user=default_user3).exists():
return KhojApiUser.objects.get(user=default_user3)
return KhojApiUser.objects.create(
user=default_user3,
name="api-key",
token="kk-diff-secret-3",
)
@pytest.fixture(scope="session")
def search_models(search_config: SearchConfig):
search_models = SearchModels()
search_models.image_search = image_search.initialize_model(search_config.image)
return search_models
@pytest.fixture
def anyio_backend():
return "asyncio"
@pytest.mark.django_db
@pytest.fixture(scope="function")
def content_config(tmp_path_factory, search_models: SearchModels, default_user: KhojUser):
content_dir = tmp_path_factory.mktemp("content")
# Generate Image Embeddings from Test Images
content_config = ContentConfig()
content_config.image = ImageContentConfig(
input_filter=None,
input_directories=["tests/data/images"],
embeddings_file=content_dir.joinpath("image_embeddings.pt"),
batch_size=1,
use_xmp_metadata=False,
)
image_search.setup(content_config.image, search_models.image_search.image_encoder, regenerate=False)
LocalOrgConfig.objects.create(
input_files=None,
input_filter=["tests/data/org/*.org"],
index_heading_entries=False,
user=default_user,
)
text_search.setup(OrgToEntries, get_sample_data("org"), regenerate=False, user=default_user)
if os.getenv("GITHUB_PAT_TOKEN"):
GithubConfig.objects.create(
pat_token=os.getenv("GITHUB_PAT_TOKEN"),
user=default_user,
)
GithubRepoConfig.objects.create(
owner="khoj-ai",
name="lantern",
branch="master",
github_config=GithubConfig.objects.get(user=default_user),
)
LocalPlaintextConfig.objects.create(
input_files=None,
input_filter=["tests/data/plaintext/*.txt", "tests/data/plaintext/*.md", "tests/data/plaintext/*.html"],
user=default_user,
)
return content_config
@pytest.fixture(scope="session")
def md_content_config():
markdown_config = LocalMarkdownConfig.objects.create(
input_files=None,
input_filter=["tests/data/markdown/*.markdown"],
)
return markdown_config
@pytest.fixture(scope="function")
def chat_client(search_config: SearchConfig, default_user2: KhojUser):
# Initialize app state
state.config.search_type = search_config
state.SearchType = configure_search_types()
LocalMarkdownConfig.objects.create(
input_files=None,
input_filter=["tests/data/markdown/*.markdown"],
user=default_user2,
)
# Index Markdown Content for Search
all_files = fs_syncer.collect_files(user=default_user2)
state.content_index, _ = configure_content(
state.content_index, state.config.content_type, all_files, state.search_models, user=default_user2
)
# Initialize Processor from Config
if os.getenv("OPENAI_API_KEY"):
chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai")
OpenAIProcessorConversationConfigFactory()
UserConversationProcessorConfigFactory(user=default_user2, setting=chat_model)
state.anonymous_mode = True
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def chat_client_no_background(search_config: SearchConfig, default_user2: KhojUser):
# Initialize app state
state.config.search_type = search_config
state.SearchType = configure_search_types()
# Initialize Processor from Config
if os.getenv("OPENAI_API_KEY"):
chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai")
OpenAIProcessorConversationConfigFactory()
UserConversationProcessorConfigFactory(user=default_user2, setting=chat_model)
state.anonymous_mode = True
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def fastapi_app():
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return app
@pytest.fixture(scope="function")
def client(
content_config: ContentConfig,
search_config: SearchConfig,
api_user: KhojApiUser,
):
state.config.content_type = content_config
state.config.search_type = search_config
state.SearchType = configure_search_types()
state.embeddings_model = EmbeddingsModel()
state.cross_encoder_model = CrossEncoderModel()
# These lines help us Mock the Search models for these search types
state.search_models.image_search = image_search.initialize_model(search_config.image)
text_search.setup(
OrgToEntries,
get_sample_data("org"),
regenerate=False,
user=api_user.user,
)
state.content_index.image = image_search.setup(
content_config.image, state.search_models.image_search, regenerate=False
)
text_search.setup(
PlaintextToEntries,
get_sample_data("plaintext"),
regenerate=False,
user=api_user.user,
)
state.anonymous_mode = False
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def client_offline_chat(search_config: SearchConfig, default_user2: KhojUser):
# Initialize app state
state.config.search_type = search_config
state.SearchType = configure_search_types()
LocalMarkdownConfig.objects.create(
input_files=None,
input_filter=["tests/data/markdown/*.markdown"],
user=default_user2,
)
all_files = fs_syncer.collect_files(user=default_user2)
configure_content(
state.content_index, state.config.content_type, all_files, state.search_models, user=default_user2
)
# Initialize Processor from Config
OfflineChatProcessorConversationConfigFactory(enabled=True)
UserConversationProcessorConfigFactory(user=default_user2)
state.anonymous_mode = True
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def new_org_file(default_user: KhojUser, content_config: ContentConfig):
# Setup
org_config = LocalOrgConfig.objects.filter(user=default_user).first()
input_filters = org_config.input_filter
new_org_file = Path(input_filters[0]).parent / "new_file.org"
new_org_file.touch()
yield new_org_file
# Cleanup
if new_org_file.exists():
new_org_file.unlink()
@pytest.fixture(scope="function")
def org_config_with_only_new_file(new_org_file: Path, default_user: KhojUser):
LocalOrgConfig.objects.update(input_files=[str(new_org_file)], input_filter=None)
return LocalOrgConfig.objects.filter(user=default_user).first()
@pytest.fixture(scope="function")
def sample_org_data():
return get_sample_data("org")
def get_sample_data(type):
sample_data = {
"org": {
"elisp.org": """
* Emacs Khoj
/An Emacs interface for [[https://github.com/khoj-ai/khoj][khoj]]/
** Requirements
- Install and Run [[https://github.com/khoj-ai/khoj][khoj]]
** Installation
*** Direct
- Put ~khoj.el~ in your Emacs load path. For e.g ~/.emacs.d/lisp
- Load via ~use-package~ in your ~/.emacs.d/init.el or .emacs file by adding below snippet
#+begin_src elisp
;; Khoj Package
(use-package khoj
:load-path "~/.emacs.d/lisp/khoj.el"
:bind ("C-c s" . 'khoj))
#+end_src
*** Using [[https://github.com/quelpa/quelpa#installation][Quelpa]]
- Ensure [[https://github.com/quelpa/quelpa#installation][Quelpa]], [[https://github.com/quelpa/quelpa-use-package#installation][quelpa-use-package]] are installed
- Add below snippet to your ~/.emacs.d/init.el or .emacs config file and execute it.
#+begin_src elisp
;; Khoj Package
(use-package khoj
:quelpa (khoj :fetcher url :url "https://raw.githubusercontent.com/khoj-ai/khoj/master/interface/emacs/khoj.el")
:bind ("C-c s" . 'khoj))
#+end_src
** Usage
1. Call ~khoj~ using keybinding ~C-c s~ or ~M-x khoj~
2. Enter Query in Natural Language
e.g "What is the meaning of life?" "What are my life goals?"
3. Wait for results
*Note: It takes about 15s on a Mac M1 and a ~100K lines corpus of org-mode files*
4. (Optional) Narrow down results further
Include/Exclude specific words from results by adding to query
e.g "What is the meaning of life? -god +none"
""",
"readme.org": """
* Khoj
/Allow natural language search on user content like notes, images using transformer based models/
All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline
** Dependencies
- Python3
- [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]]
** Install
#+begin_src shell
git clone https://github.com/khoj-ai/khoj && cd khoj
conda env create -f environment.yml
conda activate khoj
#+end_src""",
},
"markdown": {
"readme.markdown": """
# Khoj
Allow natural language search on user content like notes, images using transformer based models
All data is processed locally. User can interface with khoj app via [Emacs](./interface/emacs/khoj.el), API or Commandline
## Dependencies
- Python3
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links)
## Install
```shell
git clone
conda env create -f environment.yml
conda activate khoj
```
"""
},
"plaintext": {
"readme.txt": """
Khoj
Allow natural language search on user content like notes, images using transformer based models
All data is processed locally. User can interface with khoj app via Emacs, API or Commandline
Dependencies
- Python3
- Miniconda
Install
git clone
conda env create -f environment.yml
conda activate khoj
"""
},
}
return sample_data[type]