mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 23:48:56 +01:00
65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
from typing import Optional
|
|
from fastapi import FastAPI
|
|
from search_types import asymmetric
|
|
import argparse
|
|
import pathlib
|
|
import uvicorn
|
|
|
|
app = FastAPI()
|
|
|
|
def create_search_notes(corpus_embeddings, entries, bi_encoder, cross_encoder, top_k):
|
|
"Closure to create search_notes method from initialized model, entries and embeddings"
|
|
def search_notes(query):
|
|
return asymmetric.query_notes(
|
|
query,
|
|
corpus_embeddings,
|
|
entries,
|
|
bi_encoder,
|
|
cross_encoder,
|
|
top_k)
|
|
|
|
return search_notes
|
|
|
|
|
|
@app.get('/search')
|
|
def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
|
|
if q is None or q == '':
|
|
print(f'No query param (q) passed in API call to initiate search')
|
|
return {}
|
|
|
|
user_query = q
|
|
results_count = n
|
|
|
|
if t == 'notes':
|
|
# query notes
|
|
hits = search_notes(user_query)
|
|
|
|
# collate and return results
|
|
return asymmetric.collate_results(hits, entries, results_count)
|
|
|
|
else:
|
|
return {}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Setup Argument Parser
|
|
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
|
|
parser.add_argument('--jsonl-file', '-j', required=True, type=pathlib.Path, help="Input file for compressed JSONL formatted notes to compute embeddings from")
|
|
parser.add_argument('--embeddings-file', '-e', type=pathlib.Path, help="File to save/load model embeddings to/from. Default: ./embeddings.pt")
|
|
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
|
|
args = parser.parse_args()
|
|
|
|
# Initialize Model
|
|
bi_encoder, cross_encoder, top_k = asymmetric.initialize_model()
|
|
|
|
# Extract Entries
|
|
entries = asymmetric.extract_entries(args.jsonl_file, args.verbose)
|
|
|
|
# Compute or Load Embeddings
|
|
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings_file, args.verbose)
|
|
|
|
# Generate search_notes method from initialized model, entries and embeddings
|
|
search_notes = create_search_notes(corpus_embeddings, entries, bi_encoder, cross_encoder, top_k)
|
|
|
|
# Start Application Server
|
|
uvicorn.run(app)
|