khoj/documentation/docs/advanced/ollama.mdx
Debanjum 01bc6d35dc
Rename Chat Model Options table to Chat Model as short & readable (#1003)
- Previous was incorrectly plural but was defining only a single model
- Rename chat model table field to name
- Update documentation
- Update references functions and variables to match new name
2024-12-12 11:24:16 -08:00

78 lines
3.5 KiB
Text

# Ollama
```mdx-code-block
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
```
:::info
This is only helpful for self-hosted users. If you're using [Khoj Cloud](https://app.khoj.dev), you can use our first-party supported models.
:::
:::info
Khoj can directly run local LLMs [available on HuggingFace in GGUF format](https://huggingface.co/models?library=gguf). The integration with Ollama is useful to run Khoj on Docker and have the chat models use your GPU or to try new models via CLI.
:::
Ollama allows you to run [many popular open-source LLMs](https://ollama.com/library) locally from your terminal.
For folks comfortable with the terminal, Ollama's terminal based flows can ease setup and management of chat models.
Ollama exposes a local [OpenAI API compatible server](https://github.com/ollama/ollama/blob/main/docs/openai.md#models). This makes it possible to use chat models from Ollama with Khoj.
## Setup
:::info
Restart your Khoj server after first run or update to the settings below to ensure all settings are applied correctly.
:::
<Tabs groupId="type" queryString>
<TabItem value="first-run" label="First Run">
<Tabs groupId="server" queryString>
<TabItem value="docker" label="Docker">
1. Setup Ollama: https://ollama.com/
2. Download your preferred chat model with Ollama. For example,
```bash
ollama pull llama3.1
```
3. Uncomment `OPENAI_API_BASE` environment variable in your downloaded Khoj [docker-compose.yml](https://github.com/khoj-ai/khoj/blob/master/docker-compose.yml#:~:text=OPENAI_API_BASE)
4. Start Khoj docker for the first time to automatically integrate and load models from the Ollama running on your host machine
```bash
# run below command in the directory where you downloaded the Khoj docker-compose.yml
docker-compose up
```
</TabItem>
<TabItem value="pip" label="Pip">
1. Setup Ollama: https://ollama.com/
2. Download your preferred chat model with Ollama. For example,
```bash
ollama pull llama3.1
```
3. Set `OPENAI_API_BASE` environment variable to `http://localhost:11434/v1/` in your shell before starting Khoj for the first time
```bash
export OPENAI_API_BASE="http://localhost:11434/v1/"
khoj --anonymous-mode
```
</TabItem>
</Tabs>
</TabItem>
<TabItem value="update" label="Update">
1. Setup Ollama: https://ollama.com/
2. Download your preferred chat model with Ollama. For example,
```bash
ollama pull llama3.1
```
3. Create a new [AI Model API](http://localhost:42110/server/admin/database/aimodelapi/add) on your Khoj admin panel
- Name: `ollama`
- Api Key: `any string`
- Api Base Url: `http://localhost:11434/v1/` (default for Ollama)
4. Create a new [Chat Model](http://localhost:42110/server/admin/database/chatmodel/add) on your Khoj admin panel.
- Name: `llama3.1` (replace with the name of your local model)
- Model Type: `Openai`
- Openai Config: `<the ollama config you created in step 3>`
- Max prompt size: `20000` (replace with the max prompt size of your model)
5. Go to [your config](http://localhost:42110/settings) and select the model you just created in the chat model dropdown.
If you want to add additional models running on Ollama, repeat step 4 for each model.
</TabItem>
</Tabs>
That's it! You should now be able to chat with your Ollama model from Khoj.